7 research outputs found

    Using unoccupied aerial vehicles (UAVs) to map seagrass cover from Sentinel-2 imagery

    Get PDF
    Seagrass habitats are ecologically valuable and play an important role in sequestering and storing carbon. There is, thus, a need to estimate seagrass percentage cover in diverse environments in support of climate change mitigation, marine spatial planning and coastal zone management. In situ approaches are accurate but time-consuming, expensive and may not represent the larger spatial units collected by satellite imaging. Hence, there is a need for a consistent methodology that uses accurate point-based field surveys to deliver high-quality mapping of percentage seagrass cover at large spatial scales. Here, we develop a three-step approach that combines in situ (quadrats), aerial (unoccupied aerial vehicle—UAV) and satellite data to map percentage seagrass cover at Turneffe Atoll, Belize, the largest atoll in the northern hemisphere. First, the optical bands of four UAV images were used to calculate seagrass cover, in combination with in situ data. The seagrass cover calculated from the UAV was then used to develop training and validation datasets to estimate seagrass cover in Sentinel-2 pixels. Next, non-seagrass areas were identified in the Sentinel-2 data and removed by object-based classification, followed by a pixel-based regression to calculate seagrass percentage cover. Using this approach, percentage seagrass cover was mapped using UAVs (R2 = 0.91 between observed and mapped distributions) and using Sentinel-2 data (R2 = 0.73). This work provides the first openly available and explorable map of seagrass percentage cover across Turneffe Atoll, where we estimate approximately 242 km2 of seagrass above 10% cover is located. We estimate that this approach offers 30 times more data for training satellite data than traditional methods, therefore presenting a substantial reduction in cost-per-point for data. Furthermore, the increase in data helps deliver a high-quality seagrass cover map, suitable for resolving trends of deteriorating, stable or recovering seagrass environments at 10 m2 resolution to underpin evidence-based management and conservation of seagrass.publishedVersio

    Using unoccupied aerial vehicles (UAVs) to map seagrass cover from Sentinel-2 imagery

    Get PDF
    Seagrass habitats are ecologically valuable and play an important role in sequestering and storing carbon. There is, thus, a need to estimate seagrass percentage cover in diverse environments in support of climate change mitigation, marine spatial planning and coastal zone management. In situ approaches are accurate but time-consuming, expensive and may not represent the larger spatial units collected by satellite imaging. Hence, there is a need for a consistent methodology that uses accurate point-based field surveys to deliver high-quality mapping of percentage seagrass cover at large spatial scales. Here, we develop a three-step approach that combines in situ (quadrats), aerial (unoccupied aerial vehicle—UAV) and satellite data to map percentage seagrass cover at Turneffe Atoll, Belize, the largest atoll in the northern hemisphere. First, the optical bands of four UAV images were used to calculate seagrass cover, in combination with in situ data. The seagrass cover calculated from the UAV was then used to develop training and validation datasets to estimate seagrass cover in Sentinel-2 pixels. Next, non-seagrass areas were identified in the Sentinel-2 data and removed by object-based classification, followed by a pixel-based regression to calculate seagrass percentage cover. Using this approach, percentage seagrass cover was mapped using UAVs (R2 = 0.91 between observed and mapped distributions) and using Sentinel-2 data (R2 = 0.73). This work provides the first openly available and explorable map of seagrass percentage cover across Turneffe Atoll, where we estimate approximately 242 km2 of seagrass above 10% cover is located. We estimate that this approach offers 30 times more data for training satellite data than traditional methods, therefore presenting a substantial reduction in cost-per-point for data. Furthermore, the increase in data helps deliver a high-quality seagrass cover map, suitable for resolving trends of deteriorating, stable or recovering seagrass environments at 10 m2 resolution to underpin evidence-based management and conservation of seagrass

    The GULLS project: a comparison of vulnerabilities across selected ocean hotspots and implications for adaptation to global change

    Get PDF
    The GULLS project, `Global learning for local solutions: Reducing vulnerability of marine-dependent coastal communities' has been underway since October 2014. The project has been investigating six regional `hotspots': marine areas experiencing rapid warming. These are south-east Australia, Brazil, India, Solomon Islands, South Africa, and the Mozambique Channel and Madagascar. Rapid warming could be expected to have social, cultural and economic impacts that could affect these countries in different ways and may already be doing so. GULLS has focused on contributing to assessing and reducing the vulnerability of coastal communities and other stakeholders dependent on marine resources and to facilitate adaptation to climate change and variability through an integrated and trans-disciplinary approach. It includes participants from Australia, Brazil, India, Madagascar, New Zealand, South Africa, the United Kingdom and the United States of America. The research programme has been divided into six inter-linked components: ocean models, biological and ecological sensitivity analyses, system models, social vulnerability, policy mapping, and communication and education. This presentation will provide a brief overview of each of these components and describe the benefits that have resulted from the collaborative and transdisciplinary approach of GULLS. Following the standard vulnerability elements of exposure, sensitivity and adaptive capacity, the vulnerabilities of coastal communities and other stakeholders dependent on marine resources in the five hotspots will be compared using a set of indicators derived and populated from results of the research programme. The implications of similarities and differences between the hotspots for adaptation planning and options will be described

    Satellite observation of the oceans

    No full text
    Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started

    Optical remote sensing of marine, coastal, and inland waters

    No full text

    GEO Inland and Nearshore Coastal Water Quality Remote Sensing Workshop

    No full text
    Having and maintaining suitable water quality is critical to sustain life on our planet. Monitoring of water quality using remote sensing, in conjunction with strategic in situ sampling can play a crucial role in determining the current status of water quality conditions and helps anticipate, mitigate and even avoid future water catastrophes. The GEO Remote Sensing of Water Quality Workshop helped identify issues, gaps, solutions and recommendations to expand our capability and capacity to utilize remote sensing technology. A major outcome of the workshop was a series of recommendations, addressing a number of far-ranging facets of this emerging remote sensing application. Key recommendations focused on continuity of existing satellites, development of new and improved sensor/platform technology, algorithm development and calibration/validation activities, improvements in data accessibility, education, and capacity building through new demonstration project initiatives, and the formation of a scientific group dedicated to inland and coastal water quality remote sensing. It is hoped that this workshop is the beginnings of a coordinated effort to future advance of this technology. It is important to emphasize the need for strong linkages between the entities that produce the data and the end users, for this relationship will ultimately determine the success of these tools for future water resource management
    corecore