9 research outputs found

    Improved Electrical Performance and Bias Stability of Solution-Processed Active Bilayer Structure of Indium Zinc Oxide based TFT

    No full text
    We fabricated active single- and bilayer structure thin film transistors (TFTs) with aluminum or gallium doped (IZO:Al or IZO:Ga) and undoped indium zinc oxide (IZO) thin film layers using an aqueous solution process. The electrical performance and bias stability of these active single- and bilayer structure TFTs were investigated and compared to reveal the effects of Al/Gal doping and bilayer structure. The single-layer structure IZO TFT shows a high mobility of 19 cm<sup>2</sup>/V·s with a poor positive bias stability (PBS) of Δ<i>V</i><sub>T</sub> + 3.4 V. However, Al/Ga doped in IZO TFT reduced mobility to 8.5–9.9 cm<sup>2</sup>/V·s but improved PBS to Δ<i>V</i><sub>T</sub> + 1.6–1.7 V due to the reduction of oxygen vacancy. Thus, it is found the bilayer structure TFTs with a combination of bottom- and top-layer compositions modify both the mobility and bias stability of the TFTs to be optimized. The bilayer structure TFT with an IZO:X bottom layer possess high mobility and an IZO bottom layer improves the PBS

    Sol–Gel Derived Transparent Zirconium-Phenyl Siloxane Hybrid for Robust High Refractive Index LED Encapsulant

    No full text
    We report a zirconium-phenyl siloxane hybrid material (ZPH) that can be used as a robust LED encapsulant. The ZPH encapsulant was fabricated via hydrosilylation-curing of sol–gel derived multifunctional (vinyl- and hydride-functions) siloxane resins containing phenyl-groups and Zr–O–Si heterometallic phase for achieving a high refractive index (<i>n</i> ≈ 1.58). In thermal aging, the ZPH LED encapsulant exhibited superior performances with a high optical transparency (∼88% at 450 nm) and exhibited high thermal stability (no yellowing at 180 °C for 1008 h), compared to a commercial LED encapsulant (OE-6630, Dow Corning Corporation). This suggests potential for ZPH to be a robust LED encapsulant

    Thermally Stable Siloxane Hybrid Matrix with Low Dielectric Loss for Copper-Clad Laminates for High-Frequency Applications

    No full text
    We report vinyl-phenyl siloxane hybrid material (VPH) that can be used as a matrix for copper-clad laminates (CCLs) for high-frequency applications. The CCLs, with a VPH matrix fabricated via radical polymerization of resin blend consisting of sol–gel-derived linear vinyl oligosiloxane and bulky siloxane monomer, phenyltris­(trimethylsiloxy)­silane, achieve low dielectric constant (Dk) and dissipation factor (Df). The CCLs with the VPH matrix exhibit excellent dielectric performance (Dk = 2.75, Df = 0.0015 at 1 GHz) with stability in wide frequency range (1 MHz to 10 GHz) and at high temperature (up to 275 °C). Also, the VPH shows good flame resistance without any additives. These results suggest the potential of the VPH for use in high-speed IC boards

    Thermally Stable Siloxane Hybrid Matrix with Low Dielectric Loss for Copper-Clad Laminates for High-Frequency Applications

    No full text
    We report vinyl-phenyl siloxane hybrid material (VPH) that can be used as a matrix for copper-clad laminates (CCLs) for high-frequency applications. The CCLs, with a VPH matrix fabricated via radical polymerization of resin blend consisting of sol–gel-derived linear vinyl oligosiloxane and bulky siloxane monomer, phenyltris­(trimethylsiloxy)­silane, achieve low dielectric constant (Dk) and dissipation factor (Df). The CCLs with the VPH matrix exhibit excellent dielectric performance (Dk = 2.75, Df = 0.0015 at 1 GHz) with stability in wide frequency range (1 MHz to 10 GHz) and at high temperature (up to 275 °C). Also, the VPH shows good flame resistance without any additives. These results suggest the potential of the VPH for use in high-speed IC boards

    Ultraviolet Light Stable and Transparent Sol–Gel Methyl Siloxane Hybrid Material for UV Light-Emitting Diode (UV LED) Encapsulant

    No full text
    An ultraviolet (UV) transparent and stable methyl-siloxane hybrid material was prepared by a facile sol–gel method. The transparency and stability of a UV-LED encapsulant is an important issue because it affects UV light extraction efficiency and long-term reliability. We introduced a novel concept for UV-LED encapsulation using a thermally curable oligosiloxane resin. The encapsulant was fabricated by a hydrosilylation of hydrogen-methyl oligosiloxane resin and vinyl-methyl siloxane resin, and showed a comparable transmittance to polydimethylsiloxane (PDMS) in the UVB (∼300 nm) region. Most remarkably, the methyl-siloxane hybrid materials exhibited long-term UV stability under light soaking in UVB (∼300 nm) for 1000 h

    Quantum Dot/Siloxane Composite Film Exceptionally Stable against Oxidation under Heat and Moisture

    No full text
    We report on the fabrication of a siloxane-encapsulated quantum dot (QD) film (QD-silox film), which exhibits stable emission intensity for over 1 month even at elevated temperature and humidity. QD-silox films are solidified via free radical addition reaction between oligosiloxane resin and ligand molecules on QDs. We prepare the QD-oligosiloxane resin by sol–gel condensation reaction of silane precursors with QDs blended in the precursor solution, forgoing ligand-exchange of QDs. The resulting QD-oligosiloxane resin remains optically clear after 40 days of storage, in contrast to other QD-containing resins which turn turbid and ultimately form sediments. QDs also disperse uniformly in the QD-silox film, whose photoluminescence (PL) quantum yield (QY) remains nearly unaltered under harsh conditions; for example, 85 °C/5% relative humidity (RH), 85 °C/85% RH, strongly acidic, and strongly basic environments for 40 days. The QD-silox film appears to remain equally emissive even after being immersed into boiling water (100 °C). Interestingly, the PL QY of the QD-silox film noticeably increases when the film is exposed to a moist environment, which opens a new, facile avenue to curing dimmed QD-containing films. Given its excellent stability, we envision that the QD-silox film is best suited in display applications, particularly as a PL-type down-conversion layer

    Quantum Dot/Siloxane Composite Film Exceptionally Stable against Oxidation under Heat and Moisture

    No full text
    We report on the fabrication of a siloxane-encapsulated quantum dot (QD) film (QD-silox film), which exhibits stable emission intensity for over 1 month even at elevated temperature and humidity. QD-silox films are solidified via free radical addition reaction between oligosiloxane resin and ligand molecules on QDs. We prepare the QD-oligosiloxane resin by sol–gel condensation reaction of silane precursors with QDs blended in the precursor solution, forgoing ligand-exchange of QDs. The resulting QD-oligosiloxane resin remains optically clear after 40 days of storage, in contrast to other QD-containing resins which turn turbid and ultimately form sediments. QDs also disperse uniformly in the QD-silox film, whose photoluminescence (PL) quantum yield (QY) remains nearly unaltered under harsh conditions; for example, 85 °C/5% relative humidity (RH), 85 °C/85% RH, strongly acidic, and strongly basic environments for 40 days. The QD-silox film appears to remain equally emissive even after being immersed into boiling water (100 °C). Interestingly, the PL QY of the QD-silox film noticeably increases when the film is exposed to a moist environment, which opens a new, facile avenue to curing dimmed QD-containing films. Given its excellent stability, we envision that the QD-silox film is best suited in display applications, particularly as a PL-type down-conversion layer

    Complementary p- and n‑Type Polymer Doping for Ambient Stable Graphene Inverter

    No full text
    Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form

    Conducting Nanopaper: A Carbon-Free Cathode Platform for Li–O<sub>2</sub> Batteries

    No full text
    For a lithium–oxygen (Li–O<sub>2</sub>) battery air electrode, we have developed a new all-in-one platform for designing a porous, carbon-free conducting nanopaper (CNp), which has dual functions as catalyst and current-collector, composed of one-dimensional conductive nanowires bound by a chitin binder. The CNp platform is fabricated by a liquid diffusion-induced crystallization and vacuum filtration methods. Employing less than 1 wt % chitin to connect the conductive skeleton, pores and active sites for reactions have become maximized in self-standing CNp. The carbon-free CNp enables the Li–O<sub>2</sub> air electrode to be more stably operated compared to carbon nanofibers and other CNps bound by PVDF and PMMA; side reactions are largely suppressed on the CNp. The versatile chitin is highlighted for diverse conducting nanopapers that can be used in various applications
    corecore