10 research outputs found
Tick-Borne Hemoparasites of Sheep: A Molecular Rresearch in Turkey
Tick-borne diseases (TBDs) indulge in severe economic losses in the livestock industry by adversely affecting the small ruminant breeding in tropical and subtropical zone countries, including Turkey. Turkey encompasses a wide land area representing diverse climatic conditions. The present study explored the presence and distribution of Babesia ovis, Theileria ovis, Theileria lestoquardi, Anaplasma ovis, Anaplasma phagocytophilum and the co-occurrence status of these pathogens. A total of 299 sheep blood samples were collected from fifteen provinces located in six different geographical regions in Turkey. PCR analyses were executed using species-specific primers based on Babesia ovis BoSSU rRNA, Theileria ovis ToSSU rRNA, Theileria lestoquardi 18S rRNA, Anaplasma ovis Major Surface Protein (AoMSP4), and Anaplasma phagocytophilum 16S rRNA genes. Overall, 219 (73.24%) sheep were found to be infected with at least one of the following protozoan and rickettsial pathogens; B. ovis, A. ovis,T. ovis, and A. phagocytophilum. Theileria lestoquardi was not detected in any blood sample. The global prevalence of B. ovis, A. ovis, T. ovis, and A. phagocytophilum was estimated to be 2.68%, 16.05%, 41.47%, and 57.19%, respectively. Besides this, dual (24.41%), triple (9.03%), and quadruple (0.67%) co-infections were detected in the study. Phylogenetic analysis revealed significant nucleotide sequence identities between the sequences obtained in this study and the sequences registered in the GenBank. This study provides relevant data regarding the predominance of ovine tick-borne protozoan and rickettsial agents in Turkey. A high molecular prevalence of tick-borne pathogens (TBPs) was identified in the study. This situation indicates that TBPs should be screened continuously, and necessary control measures should be taken to prevent diseases caused by tick-borne protozoan and rickettsial agents
Molecular Characterization of Octopamine/Tyramine Receptor Gene of Amitraz-Resistant Rhipicephalus (Boophilus) decoloratus Ticks from Uganda
We previously reported the emergence of amitraz-resistant Rhipicephalus (Boophilus) decoloratus ticks in the western region of Uganda. This study characterized the octopamine/tyramine receptor gene (OCT/Tyr) of amitraz-resistant and -susceptible R. (B.) decoloratus ticks from four regions of Uganda. The OCT/Tyr gene was amplified from genomic DNA of 17 R. (B.) decoloratus larval populations of known susceptibility to amitraz. The amplicons were purified, cloned and sequenced to determine mutations in the partial coding region of the OCT/Tyr gene. The amplified R. (B.) decoloratus OCT/Tyr gene was 91–100% identical to the R. (B.) microplus OCT/Tyr gene. Up to 24 single nucleotide polymorphisms (SNPs) were found in the OCT/Tyr gene from ticks obtained from high acaricide pressure areas, compared to 8 from the low acaricide pressure areas. A total of eight amino acid mutations were recorded in the partial OCT/Tyr gene from ticks from the western region, and four of them were associated with amitraz-resistant tick populations. The amino acid mutations M1G, L16F, D41G and V72A were associated with phenotypic resistance to amitraz with no specific pattern. Phylogenetic analysis revealed that the OCT/Tyr gene sequence from this study clustered into two distinct groups that separated the genotype from high acaricide pressure areas from the susceptible populations. In conclusion, this study is the first to characterize the R. (B.) decoloratus OCT/Tyr receptor gene and reports four novel amino acid mutations associated with phenotypic amitraz resistance in Uganda. However, lack of mutations in the ORF of the OCT/Tyr gene fragment for some of the amitraz-resistant R. (B.) decoloratus ticks could suggest that other mechanisms of resistance may be responsible for amitraz resistance, hence the need for further investigation
Tick-borne Pathogen Detection and Its Association with Alterations in Packed Cell Volume of Dairy Cattle in Thailand
Tick-borne diseases (TBDs) massively impact bovine production. In endemic countries, animals are often subclinically infected, showing no signs of the illness. Anemia is a hallmark of TBDs, but there is inadequate information on its presence in infected Thai cattle. In the present study, 265 cattle from four provinces in Thailand were surveyed to identify tick-borne pathogens (TBPs) and to evaluate the changes in the packed cell volume (PCV) values associated with detection. Microscopy and polymerase chain reaction (PCR) were also compared for TBP detection. Babesia/Theileria/Hepatozoon was detected in 33.58% (89/265) of the cattle samples. Specifically, Babesia bovis (9/265), B. bigemina (12/265), Theileria orientalis (62/265), and Anaplasma marginale (50/265) were identified using species-specific assays. Significant decreases in the mean PCV levels were observed in cattle that were positive for at least one TBP (p Babesia/Theileria/Hepatozoon (p T. orientalis (p A. marginale (p = 0.049). The results of PCR and microscopy for the detection of TBPs suggested slight and fair agreement between the two detection tools. The present findings contribute to a better understanding of TBDs in the field and shall facilitate the formulation of effective control for TBDs in Thailand
Transient Transfection of the Zoonotic Parasite Babesia microti
The development of genetic manipulation techniques has been reported in many protozoan parasites over the past few years. However, these techniques have not been established for Babesia microti. Here, we report the first successful transient transfection of B. microti. The plasmids containing the firefly luciferase reporter gene were transfected into B. microti by an AMAXA 4D Nucleofection system. Twenty-four-hour synchronization, the 5′-actin promoter, program FA100, and 50 μg of plasmid DNA constituted the best conditions for the transient transfection of B. microti. This finding is the first step towards a stable transfection method for B. microti, which may contribute to a better understanding of the biology of the parasite
A Survey of Tick Infestation and Tick-Borne Piroplasm Infection of Cattle in Oudalan and Séno Provinces, Northern Burkina Faso
In this study, cattle farms located in Oudalan and Séno, two provinces in the Sahel region, northern Burkina Faso, were surveyed. Cattle owners were interviewed, cattle were examined for tick infestation, and ticks as well as blood samples were collected during the dry season (October). Blood DNA samples were tested for Babesia and Theileria infections using nested PCRs and sequencing. A total of 22 herds, 174 Zebu cattle were investigated at 6 different sites. Overall, 76 cattle (43.7 %) from 18 farms (81.8%) were found infested with ticks. Cattle in Séno, adult cattle (>5 years) and those owned by the Fulani ethnic group were significantly (p < 0.05) more likely to be tick-infested. A total of 144 adult ticks belonging to five species namely: Hyalomma impeltatum, Hyalomma impressum, Hyalomma rufipes, Rhipicephalus evertsi evertsi, and Rhipicephalus guilhoni were collected from the animals. Piroplasms were detected in the blood DNA of 23 (13.2%) cattle. The cattle in Séno and adult cattle were significantly more likely to be piroplasm-positive. Five pathogens diversely distributed were identified. Theileria mutans (12/174), Babesia bigemina (5/174), Theileria annulata (3/174), and Theileria velifera (3/174) were detected for the first time in northern Burkina Faso, whereas Babesia occultans (1/174) was found for the first time in cattle in West Africa. The analysis of the sequences, including B. bigemina RAP-1a, T. annulata Tams1 genes, and the 18S rRNA genes of all the five protozoa, revealed identities ranging from 98.4 to 100% with previously published sequences. Phylogenetic analysis based on the 18S rRNA gene sequences located north Burkina Faso piroplasms in the same clade as isolates from Africa and other regions of the world. Notably, T. mutans sequences were distributed in two clades: the T. mutans Intona strain clade and the Theileria sp. (strain MSD)/ Theileria sp. B15a clade, suggesting the presence of at least two strains in the area. These findings indicate that the control of ticks and tick-borne diseases should be taken into account in strategies to improve animal health in the Sahel region
First Molecular Identification of <i>Babesia</i>, <i>Theileria</i>, and <i>Anaplasma</i> in Goats from the Philippines
Goats are key livestock animals and goat raising is an income-generating venture for smallholder farmers, supporting agricultural development in many parts of the world. However, goat production is often limited by various factors, such as tick-borne diseases. Goat piroplasmosis is a disease caused by apicomplexan parasites Babesia spp. and Theileria spp., while anaplasmosis is caused by bacterial Anaplasma spp. In the Philippines, the presence of Babesia, Theileria, and Anaplasma has not been reported in goats. In this study, DNA obtained from goats were molecularly screened for Babesia/Theileria and Anaplasma. Of 396, 77.02% (305/396) and 38.64% (153/396) were positive for piroplasma and Anaplasma using PCR assays targeting the 18S rRNA and 16S rRNA genes, respectively. Similarly, Babesia ovis was detected in six samples (1.52%). Representative Babesia/Theileria sequences shared 89.97–97.74% identity with each other and were most closely related to T. orientalis, T. annulata, and Theileria spp. Meanwhile, Anaplasma 16SrRNA sequences were related to A. odocoilei, A. platys, and A. phagocytophilum. This is the first molecular identification of B. ovis, Theileria spp., and Anaplasma spp. in goats from the Philippines
Molecular survey of tick-borne pathogens infecting backyard cattle and water buffaloes in Quezon Province, Philippines
Tick-borne diseases (TBD) cause enormous losses for farmers. Backyard raising comprises majority of the livestock population in the Philippines, but TBD information in backyard livestock is scarce. In this study, 48 cattle and 114 water buffalo samples from Quezon province, Philippines were molecularly screened for tick-borne pathogens. Anaplasma marginale (16.67%) and hemoplasma (20.99%) were detected in the samples. A. marginale infection (P=0.0001) was significantly higher in cattle, while hemoplasma infection (P=0.011) was significantly higher in water buffaloes. A. marginale isolates from this study were highly similar to previous isolates from the Philippines while Mycoplasma wenyonii and Candidatus Mycoplasma haemobos were the identified hemoplasma species. Our findings reveal additional information on the TBD situation of Philippine backyard livestock