63,733 research outputs found
Can tract element distributions reclaim tectonomagmatic facies of basalts in greenstone assemblages?
During the past two decades many words have been written both for and against the hypothesis that the tectonic setting of a suite of igneous rocks is retained by the chemical variability within the suite. For example, it is argued that diagrams can be constructed from modern/recent basalt subcompositions within the system Ti-Zr-Y-Nb-Sr such that tectonomagmatic settings can be reclaimed. If one accepts this conclusion, it is tempting to inquire as to how far this hypothesis can be extended into other petrological realms. If chemical variations of metabasalts retain information relating to their genesis (tectonic setting), for example, this would be most helpful in reconstructing the history of basalts from greenstone belts. A discussion follows
An object-oriented model of measurement systems
This paper presents a general object-oriented model for measurement systems. The limitations of the conventional function-oriented models are examined in the light of the generalized concept of measurement and its theoretical framework proposed previously by the authors. The proposed model identifies five classes of objects, i.e., measured object, measuring instrument, reference standard, human observer, and operating environment. Each is characterized by its own attributes and operations or functions at three levels, i.e., internal, operational, and environmental. The interactions between them are also modeled, including the coupling between the measured object and the measuring instrument, the human-instrument interface, the calibration, and the interference. It serves as both a modeling framework and a practical tool for description, analysis and design, and, in particular, for computer-aided analysis and design of a measuring system. It will find applications in instrumentation engineering and measurement research and education
The Penn Science Teacher Institute: A Proven Model
The University of Pennsylvania’s Master of Chemistry Education (MCE) program graduated five cohorts of approximately twenty teachers between 2002 and 2006. One year after the teachers in the last cohort earned their degrees, the Penn Science Teacher Institute (Penn STI) initiated a follow-up study to ascertain if the goals of the MCE program had been sustained. For example, were the teachers incorporating updated content knowledge into their lessons and were their students learning more chemistry? A total of seventy-four of the eighty-two graduates participated in some aspect of this study. Because baseline data were not available for the MCE teachers and their students, baseline data from a comparable group of chemistry teachers enrolled in the first cohort of the Penn STI program and their students were used in some analyses. Among other findings, the data indicate that MCE met its goals: 1) to improve the chemistry content knowledge of its teacher participants; 2) to increase the use of research-based instruction in their classrooms; and, 3) to improve student achievement in chemistry (students of MCE graduates scored significantly higher than the comparison group)
Dynamic error characteristics of touch trigger probes used with coordinate measuring machines
This paper discusses the dynamic error characteristics of touch trigger probes used with coordinate measuring machines. During the investigation, a number of important parameters have been identified, including measurement speed, probe longitude, approach distance, probe latitude, stylus length/stylus tip diameter, probe orientation, operating mode (scanning and nonscanning), scan pitch, preload spring force (gauging force), probe type, and the surface approach angle. This paper presents the detailed experimental design and the results obtained from the systematic experiments. These results have led to some useful recommendations for the reduction of the probe dynamic errors. Some of these recommendations included the selection of the optimum measurement speed, the setting of the preload spring force, and the choice of the probe type
Resonator-induced dissipation of transverse nuclear-spin signals in cold nanoscale samples
The back action of typical macroscopic resonators used for detecting nuclear magnetic resonance can cause a reversible decay of the signal, known as radiation damping. A mechanical resonator that is strongly coupled to a microscopic sample can in addition induce an irreversible dissipation of the nuclear-spin signal, distinct from radiation damping. We provide a theoretical description of resonator-induced transverse relaxation that is valid for samples of a few nuclear spins in the low-temperature regime, where quantum fluctuations play a significant role in the relaxation process, as well as for larger samples and at higher temperatures. Transverse relaxation during free evolution and during spin locking are analyzed, and simulations of relaxation in example systems are presented. In the case where an isolated spin 1/2 interacts with the resonator, transverse relaxation is exponential during free evolution, and the time constant for the relaxation is T_2=2/R_h, where R_h is the rate constant governing the exchange of quanta between the resonator and the spin. For a system of multiple spins, the time scale of transverse relaxation during free evolution depends on the spin Hamiltonian, which can modify the relaxation process through the following effects: (1) changes in the structure of the spin-spin correlations present in the energy eigenstates, which affect the rates at which these states emit and absorb energy, (2) frequency shifts that modify emission and absorption rates within a degenerate manifold by splitting the energy degeneracy and thus suppressing the development of resonator-induced correlations within the manifold, and (3) frequency shifts that introduce a difference between the oscillation frequencies of single-quantum coherences ρ_(ab) and ρ_(cd) and average to zero the transfers between them. This averaging guarantees that the spin transitions responsible for the coupling between ρ_(ab) and ρ_(cd) cause irreversible loss of order rather than a reversible interconversion of the coherences. In systems of a few spins, transverse relaxation is accelerated by a dipolar Hamiltonian that is either the dominant term in the internal spin Hamiltonian or a weak perturbation to the chemical-shift Hamiltonian. A pure chemical-shift Hamiltonian yields exponential relaxation with T_2=2/R_h in the case where the Larmor frequencies of the spins are distinct and sufficiently widely spaced. During spin locking with a nutation frequency fast enough to average the evolution under the internal spin Hamiltonian but not the interactions occurring during the correlation time of the resonator, relaxation of the spin-locked component is exponential with time constant T_(1ρ)=2/R_h
Miniature vibration isolator Patent
Miniature vibration isolator utilizing elastic tubing materia
Field tests of the real-data acquisiton system for the NASA-LaRC differential absorption lidar
A data acquisition system (DAS) for the NASA/LaRC Differential Absorption Lidar (DIAL) was documented. This DAS is a dual LSI 11/23 set up where one computer retrieves data from the digitizers and other peripheral units, stores that data on magnetic tape, generates aerosol grayscales on a Trilog printer and passes data to the second computer. The second computer is dedicated to real time displays of the data in a variety of modes from raw data to range resolved ozone profiles. The DIAL DAS also has several new features
- …
