40 research outputs found
TI-games I: An Exploration of Type Indeterminacy In Strategic Decision-Making
The Type Indeterminacy model is a theoretical framework that formalizes the
constructive preference perspective suggested by Kahneman and Tversky. In this
paper we explore an extention of the TI-model from simple to strategic
decision-making. A 2X2 game is investigated. We first show that in a one-shot
simultaneaous move setting the TI-model is equivalent to a standard incomplete
information model. We then let the game be preceded by a cheap-talk promise
exchange game. We show in an example that in the TI-model the promise stage can
have impact on next following behavior when the standard classical model
predicts no impact whatsoever. The TI approach differs from other behavioral
approaches in identifying the source of the effect of cheap-talk promises in
the intrinsic indeterminacy of the players' type.Comment: 18
Beyond the quantum formalism: consequences of a neural-oscillator model to quantum cognition
In this paper we present a neural oscillator model of stimulus response
theory that exhibits quantum-like behavior. We then show that without adding
any additional assumptions, a quantum model constructed to fit observable
pairwise correlations has no predictive power over the unknown triple moment,
obtainable through the activation of multiple oscillators. We compare this with
the results obtained in de Barros (2013), where a criteria of rationality gives
optimal ranges for the triple moment.Comment: 4 pages; to appear in the Advances in Cognitive Neurodynamics,
Proceedings of the 4th International Conference on Cognitive Neurodynamics -
201
A Quantum-Conceptual Explanation of Violations of Expected Utility in Economics
The expected utility hypothesis is one of the building blocks of classical
economic theory and founded on Savage's Sure-Thing Principle. It has been put
forward, e.g. by situations such as the Allais and Ellsberg paradoxes, that
real-life situations can violate Savage's Sure-Thing Principle and hence also
expected utility. We analyze how this violation is connected to the presence of
the 'disjunction effect' of decision theory and use our earlier study of this
effect in concept theory to put forward an explanation of the violation of
Savage's Sure-Thing Principle, namely the presence of 'quantum conceptual
thought' next to 'classical logical thought' within a double layer structure of
human thought during the decision process. Quantum conceptual thought can be
modeled mathematically by the quantum mechanical formalism, which we illustrate
by modeling the Hawaii problem situation, a well-known example of the
disjunction effect, and we show how the dynamics in the Hawaii problem
situation is generated by the whole conceptual landscape surrounding the
decision situation.Comment: 9 pages, no figure
Experimental Evidence for Quantum Structure in Cognition
We proof a theorem that shows that a collection of experimental data of
membership weights of items with respect to a pair of concepts and its
conjunction cannot be modeled within a classical measure theoretic weight
structure in case the experimental data contain the effect called
overextension. Since the effect of overextension, analogue to the well-known
guppy effect for concept combinations, is abundant in all experiments testing
weights of items with respect to pairs of concepts and their conjunctions, our
theorem constitutes a no-go theorem for classical measure structure for common
data of membership weights of items with respect to concepts and their
combinations. We put forward a simple geometric criterion that reveals the non
classicality of the membership weight structure and use experimentally measured
membership weights estimated by subjects in experiments to illustrate our
geometrical criterion. The violation of the classical weight structure is
similar to the violation of the well-known Bell inequalities studied in quantum
mechanics, and hence suggests that the quantum formalism and hence the modeling
by quantum membership weights can accomplish what classical membership weights
cannot do.Comment: 12 pages, 3 figure
Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory
Inspired by a quantum mechanical formalism to model concepts and their
disjunctions and conjunctions, we put forward in this paper a specific
hypothesis. Namely that within human thought two superposed layers can be
distinguished: (i) a layer given form by an underlying classical deterministic
process, incorporating essentially logical thought and its indeterministic
version modeled by classical probability theory; (ii) a layer given form under
influence of the totality of the surrounding conceptual landscape, where the
different concepts figure as individual entities rather than (logical)
combinations of others, with measurable quantities such as 'typicality',
'membership', 'representativeness', 'similarity', 'applicability', 'preference'
or 'utility' carrying the influences. We call the process in this second layer
'quantum conceptual thought', which is indeterministic in essence, and contains
holistic aspects, but is equally well, although very differently, organized
than logical thought. A substantial part of the 'quantum conceptual thought
process' can be modeled by quantum mechanical probabilistic and mathematical
structures. We consider examples of three specific domains of research where
the effects of the presence of quantum conceptual thought and its deviations
from classical logical thought have been noticed and studied, i.e. economics,
decision theory, and concept theories and which provide experimental evidence
for our hypothesis.Comment: 14 page
Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory
We put forward a possible new interpretation and explanatory framework for
quantum theory. The basic hypothesis underlying this new framework is that
quantum particles are conceptual entities. More concretely, we propose that
quantum particles interact with ordinary matter, nuclei, atoms, molecules,
macroscopic material entities, measuring apparatuses, ..., in a similar way to
how human concepts interact with memory structures, human minds or artificial
memories. We analyze the most characteristic aspects of quantum theory, i.e.
entanglement and non-locality, interference and superposition, identity and
individuality in the light of this new interpretation, and we put forward a
specific explanation and understanding of these aspects. The basic hypothesis
of our framework gives rise in a natural way to a Heisenberg uncertainty
principle which introduces an understanding of the general situation of 'the
one and the many' in quantum physics. A specific view on macro and micro
different from the common one follows from the basic hypothesis and leads to an
analysis of Schrodinger's Cat paradox and the measurement problem different
from the existing ones. We reflect about the influence of this new quantum
interpretation and explanatory framework on the global nature and evolutionary
aspects of the world and human worldviews, and point out potential explanations
for specific situations, such as the generation problem in particle physics,
the confinement of quarks and the existence of dark matter.Comment: 45 pages, 10 figure
Quantum Experimental Data in Psychology and Economics
We prove a theorem which shows that a collection of experimental data of
probabilistic weights related to decisions with respect to situations and their
disjunction cannot be modeled within a classical probabilistic weight structure
in case the experimental data contain the effect referred to as the
'disjunction effect' in psychology. We identify different experimental
situations in psychology, more specifically in concept theory and in decision
theory, and in economics (namely situations where Savage's Sure-Thing Principle
is violated) where the disjunction effect appears and we point out the common
nature of the effect. We analyze how our theorem constitutes a no-go theorem
for classical probabilistic weight structures for common experimental data when
the disjunction effect is affecting the values of these data. We put forward a
simple geometric criterion that reveals the non classicality of the considered
probabilistic weights and we illustrate our geometrical criterion by means of
experimentally measured membership weights of items with respect to pairs of
concepts and their disjunctions. The violation of the classical probabilistic
weight structure is very analogous to the violation of the well-known Bell
inequalities studied in quantum mechanics. The no-go theorem we prove in the
present article with respect to the collection of experimental data we consider
has a status analogous to the well known no-go theorems for hidden variable
theories in quantum mechanics with respect to experimental data obtained in
quantum laboratories. For this reason our analysis puts forward a strong
argument in favor of the validity of using a quantum formalism for modeling the
considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure
An Exploration of Type Indeterminacy in Strategic Decision-making
In this paper we explore an extension of the Type Indeterminacy model of decision-making to strategic decision-making. A 2Ă—2 game is investigated. We first show that in a one-shot simultaneous move setting the TI-model is equivalent to the standard Bayes-Harsanyi model. We then let the game be preceded by a cheap-talk promise game. We show in an example that in the TI-model the promise stage can have an impact on the next following behavior when the standard Bayes-Harsanyi model predicts no impact whatsoever. The TI approach differs from other behavioral approaches in identifying the source of the effect of cheap-talk promises in the intrinsic indeterminacy of the players' type