83 research outputs found
Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance
<p>Abstract</p> <p>Background</p> <p><it>Burkholderia cenocepacia </it>are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of <it>B. cenocepacia </it>J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear.</p> <p>Results</p> <p>To investigate the contribution of efflux pumps to intrinsic drug resistance of <it>B. cenocepacia </it>J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes <it>BCAS0591</it>-<it>BCAS0593</it>, <it>BCAL1674</it>-<it>BCAL1676</it>, and <it>BCAL2822</it>-<it>BCAL2820</it>. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of <it>rnd-3 </it>also included <it>BCAL1672</it>, encoding a putative TetR regulator. The <it>B. cenocepacia rnd-3 </it>and <it>rnd-4 </it>mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the <it>rnd-3 </it>and <it>rnd-4 </it>mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the <it>rnd-1 </it>operon had no detectable phenotypes under the conditions assayed.</p> <p>Conclusion</p> <p>Two of the three inactivated RND efflux pumps in <it>B. cenocepacia </it>J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in <it>B. cenocepacia </it>is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic bacterium.</p
Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis
New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB
Deciphering the Role of RND Efflux Transporters in Burkholderia cenocepacia
Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF) pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division) efflux pumps are known to be among the mediators of multidrug resistance in Gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16) has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9), and a double-mutant in both efflux pumps (named D4-D9), were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4–D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis
Genomic Expression Analysis Reveals Strategies of Burkholderia cenocepacia to Adapt to Cystic Fibrosis Patients' Airways and Antimicrobial Therapy
Pulmonary colonization of cystic fibrosis (CF) patients with Burkholderia cenocepacia or other bacteria of the Burkholderia cepacia complex (Bcc) is associated with worse prognosis and increased risk of death. During colonization, the bacteria may evolve under the stressing selection pressures exerted in the CF lung, in particular, those resulting from challenges of the host immune defenses, antimicrobial therapy, nutrient availability and oxygen limitation. Understanding the adaptive mechanisms that promote successful colonization and long-term survival of B. cenocepacia in the CF lung is essential for an improved therapeutic outcome of chronic infections. To get mechanistic insights into these adaptive strategies a transcriptomic analysis, based on DNA microarrays, was explored in this study. The genomic expression levels in two clonal variants isolated during long-term colonization of a CF patient who died from the cepacia syndrome were compared. One of the isolates examined, IST439, is the first B. cenocepacia isolate retrieved from the patient and the other isolate, IST4113, was obtained three years later and is more resistant to different classes of antimicrobials. Approximately 1000 genes were found to be differently expressed in the two clonal variants reflecting a marked reprogramming of genomic expression. The up-regulated genes in IST4113 include those involved in translation, iron uptake (in particular, in ornibactin biosynthesis), efflux of drugs and in adhesion to epithelial lung tissue and to mucin. Alterations related with adaptation to the nutritional environment of the CF lung and to an oxygen-limited environment are also suggested to be a key feature of transcriptional reprogramming occurring during long-term colonization, antibiotic therapy and the progression of the disease
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
Mycobacterium tuberculosis: drug resistance and future perspectives
TB is still a global health problem. The selection and spread of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains represents a threat for global TB control. The reappearance of TB has driven an increased interest in understanding the mechanisms of drug action and drug resistance, which could provide a significant contribution in the development of new antimicrobials. In this article, the authors describe the mode of action and the resistance mechanisms of the principal first- and second-line antitubercular agents, namely isoniazid, ethionamide, ethambutol, D-cycloserine, rifamycins, fluoroquinolones, streptomycin, linezolid and pyrazinamide. A brief outline of the seven drugs in clinical development is reported, showing how the development of new TB drugs is still required
- …