1,607 research outputs found

    Universal dielectric loss in amorphous solids from simultaneous bias and microwave field

    Full text link
    We derive the ac dielectric loss in glasses due to resonant processes created by two-level systems and a swept electric field bias. It is shown that at sufficiently large ac fields and bias sweep rates the nonequilibrium loss tangent created by the two fields approaches a universal maximum determined by the bare linear dielectric permittivity. In addition this nonequilibrium loss tangent is derived for a range of bias sweep rates and ac amplitudes and show that the loss tangent creates a predicted loss function that can be understood in a Landau-Zener theory and which can be used to extract the TLS density, dipole moment, and relaxation rate.Comment: To appear in Physical Review Letters, 4 pages, 3 figure

    Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids

    Full text link
    Recently it has been experimentally demonstrated that certain glasses display an unexpected magnetic field dependence of the dielectric constant. In particular, the echo technique experiments have shown that the echo amplitude depends on the magnetic field. The analysis of these experiments results in the conclusion that the effect seems to be related to the nuclear degrees of freedom of tunneling systems. The interactions of a nuclear quadrupole electrical moment with the crystal field and of a nuclear magnetic moment with magnetic field transform the two-level tunneling systems inherent in amorphous dielectrics into many-level tunneling systems. The fact that these features show up at temperatures T<100mKT<100mK, where the properties of amorphous materials are governed by the long-range R−3R^{-3} interaction between tunneling systems, suggests that this interaction is responsible for the magnetic field dependent relaxation. We have developed a theory of many-body relaxation in an ensemble of interacting many-level tunneling systems and show that the relaxation rate is controlled by the magnetic field. The results obtained correlate with the available experimental data. Our approach strongly supports the idea that the nuclear quadrupole interaction is just the key for understanding the unusual behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure

    Damping and decoherence of a nanomechanical resonator due to a few two level systems

    Get PDF
    We consider a quantum model of a nanomechanical flexing beam resonator interacting with a bath comprising a few damped tunneling two level systems (TLS's). In contrast with a resonator interacting bilinearly with an ohmic free oscillator bath (modeling clamping loss, for example), the mechanical resonator damping is amplitude dependent, while the decoherence of quantum superpositions of mechanical position states depends only weakly on their spatial separation

    Dynamics of the Destruction and Rebuilding of a Dipole Gap in Glasses

    Full text link
    After a strong electric bias field was applied to a glass sample at temperatures in the millikelvin range its AC-dielectric constant increases and then decays logarithmically with time. For the polyester glass mylar we have observed the relaxation of the dielectric constant back to its initial value for several temperatures and histories of the bias field. Starting from the dipole gap theory we have developed a model suggesting that the change of the dielectric constant after transient application of a bias field is only partly due to relaxational processes. In addition, non-adiabatic driving of tunneling states (TSs) by applied electric fields causes long lasting changes in the dielectric constant. Moreover, our observations indicate that at temperatures below 50 mK the relaxation of TSs is caused primarily by interactions between TSs.Comment: 4 pages, 4 figures, submitted to PR

    Field-induced structural aging in glasses at ultra low temperatures

    Full text link
    In non-equilibrium experiments on the glasses Mylar and BK7, we measured the excess dielectric response after the temporary application of a strong electric bias field at mK--temperatures. A model recently developed describes the observed long time decays qualitatively for Mylar [PRL 90, 105501, S. Ludwig, P. Nalbach, D. Rosenberg, D. Osheroff], but fails for BK7. In contrast, our results on both samples can be described by including an additional mechanism to the mentioned model with temperature independent decay times of the excess dielectric response. As the origin of this novel process beyond the "tunneling model" we suggest bias field induced structural rearrangements of "tunneling states" that decay by quantum mechanical tunneling.Comment: 4 pages, 4 figures, accepted at PRL, corrected typos in version
    • …
    corecore