8 research outputs found
VPP: Visibility-Based Path Planning Heuristic for Monitoring Large Regions of Complex Terrain Using a UAV Onboard Camera.
The use of unmanned aerial vehicles with multiple onboard sensors has grown significantly in tasks involving terrain coverage such as environmental and civil monitoring, disaster management, and forest fire fighting. Many of these tasks require a quick and early response, which makes maximizing the land covered from the flight path a challenging objective, especially when the area to be monitored is irregular, large and includes many blind spots. Accordingly, state-of-the-art total viewshed algorithms can be of great help to analyze large areas and find new paths providing maximum visibility. This article shows how the total viewshed computation is a valuable tool for generating paths that provide maximum visibility during a flight. We introduce a new heuristic called visibility-based path planning (VPP) that offers a different solution to the path planning problem. VPP identifies the hidden areas of the target territory to generate a path that provides the highest visual coverage. Simulation results show that VPP can cover up to 98.7% of the Montes de Malaga Natural Park and 94.5% of the Sierra de las Nieves National Park, both located within the province of Malaga (Spain) and chosen as regions of interest. In addition, a real flight test confirmed the high visibility achieved using VPP. Our methodology and analysis can be easily applied to enhance monitoring in other large outdoor areas
Modelado de TCP en un entorno celular con dual connectivity
This paper proposes a TCP implementation in a system-level simulator. This LTE-Advanced simulator provides Dual Connectivity (DC), which allows user equipments (UEs) to receive data simultaneously from two evolved NodeBs (eNBs) in order to boost the performance in a heterogeneous network. In this work, a TCP abstraction is described to predict TCP version Reno performance in an accurate and computationally efficient way. The proposed model is used to show the impact of DC on the user throughput and dropped packets when UEs are downloading a file through TCP.Universidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tech
Online Anomaly Detection System for Mobile Networks
The arrival of the Fifth-Generation (5G) standard has further accelerated the need for
operators to improve the network capacity. With this purpose, mobile network topologies with
smaller cells are being currently deployed to increase the frequency reuse. In this way, the number of
nodes that collect performance data is being further risen, so the amount of metrics to be managed
and analyzed is being highly increased. Therefore, it is fundamental to have tools that automate
these tasks and inform the network operator of the relevant information within the vast amount
of metrics collected. In this manner, it is particularly important the continuous monitoring of the
performance indicators and the automatic detection of anomalies for network operators to prevent
the network degradation and users’ complaints. Therefore, in this paper a methodology to detect
and track anomalies in the mobile networks performance indicators in real time is proposed. The
feasibility of this system is evaluated with several performance metrics and a real LTE-Advanced
dataset. In addition, it is also compared with the performance of other state-of-the-art anomaly
detection systems
Reorganización de matrices en algoritmos de barrido radial sobre Modelos Digitales del Terreno
Es muy frecuente, en los sistemas de información geográfica que trabajan con modelos digitales del terreno, el uso de algoritmos de barrido radial para el estudio de variables asociadas a parámetros cuya magnitud decrece con el cuadrado de la distancia, como las señales de radio, las ondas de sonido, o la propia visión humana. Sin embargo, dichos algoritmos están asociados a un acceso a las matrices de datos que, en la mayorÃa de los casos, aun siendo regular, derivan en un mal aprovechamiento de la localidad de la memoria. En este trabajo se muestra cómo la completa reorganización previa de las matrices de datos, en función de la dirección radial que corresponde, produce una considerable mejora del rendimiento, especialmente en algoritmos de elevada intensidad computacional. Sirva como ejemplo el cálculo de cuencas visuales totales, que es utilizada en este trabajo como caso de estudio. Por otra parte, la re-estructuración matricial propuesta abre la puerta al uso intensivo de GPUs en muchos algoritmos para los que nunca se han considerado, por su irregularidad y baja eficienciaUniversidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tech
Distributed deep reinforcement learning resource allocation scheme for industry 4.0 Device-To-Device scenarios
This paper proposes a distributed deep reinforcement learning (DRL) methodology for autonomous mobile robots (AMRs) to manage radio resources in an indoor factory with no network infrastructure. Hence, deep neural networks (DNN) are used to optimize the decision policy of the robots, which will make decisions in a distributed manner without signalling exchange. To speed up the learning phase, a centralized training is adopted in which a single DNN is trained using the experience from all robots. Once completed, the pre-trained DNN is deployed at all robots for distributed selection of resources. The performance of this approach is evaluated and compared to 5G NR sidelink mode 2 via simulations. The results show that the proposed method achieves up to 5% higher probability of successful reception when the density of robots in the scenario is high.This work has been partially funded by Junta de AndalucÃa (projects EDEL4.0:UMA18-FEDERJA-172 and PENTA:PY18-4647) and Universidad de Málaga (I Plan Propio de Investigación, Transferencia y Divulgación CientÃfica). Ramoni Adeogun is supported by the Danish Council for Independent Research, grant no. DFF 9041-00146B. The authors would like to express their profound gratitude to Nokia Standardization Aalborg and Aalborg University for funding the first author’s research stay. The authors thank Assoc. Prof. Gilberto Beradinelli for his comments on the manuscript
Método de posicionamiento de drones LTE-5G para compensación de fallos en situaciones de emergencia
The failures resulting from cells outages or the partial loss of communications infrastructures make it impossible to serve users in the affected area. Such services would allow them to establish communication in order to get help or provide additional information about the situation to the emergency services. To solve this problem, a compensation method based on a drone deployment is proposed to be used in emergency situations. The proposed algorithm determines the position and power configuration of the drones to cover the affected area. To test and evaluate the effectiveness of the system, the throughput offered in the network after the deployment of the drones is analyzed and compared with a uniform distribution of drones.Este trabajo ha sido financiado por la Junta de AndalucÃa (ConsejerÃa de Transformación Económica, Industria, Conocimiento y Universidades, Proyecto de Excelencia PENTA, P18-FR-4647) y a través del II Plan Propio de Investigación y Transferencia de la Universidad de Málaga.
Universidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tech
MetodologÃa de monitorización autónoma de redes móviles
The fifth generation (5G) of mobile networks leads to novel services and heterogeneous scenarios that increase the complexity of management and orchestration tasks. In this context, Self-Organizing Networks (SON) are highly important to automatically monitor the network. This will allow to detect potential network failures and optimize the network performance. This paper proposes a methodology to automatically monitor a mobile network based on key performance indicators.Este trabajo ha sido financiado parcialmente por el Ministerio de EconomÃa y Competitividad de España en el marco del acuerdo de subvención RTC-2017-6661-7 (NEREA) y por la Junta de AndalucÃa mediante UMA-CEIATECH-11 (DAMA-5G), por FEDER, y en el marco del Proyecto de Excelencia PENTA (P18-FR-4647), por la ConsejerÃa de Transformación Económica, Industria, Conocimiento y Universidades. También parcialmente financiado a través del I Plan Propio de Investigación y Transferencia de la Universidad de Málaga.
Universidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tech
Machine Learning based Solutions for 5G Network Self-Management
La primera parte de esta tesis se enfoca en el desarrollo de técnicas de auto-optimización que permitan optimizar la gestión de los recursos en escenarios donde la multi-conectividad se encuentra habilitada. Con este fin se desarrollan técnicas donde los nodos que proveerán datos de forma simultánea al usuario se elegirán de forma óptima, asà como la cantidad de tráfico que cada uno de ellos proveerá al propio usuario. Estas técnicas tienen como objetivo superar el rendimiento obtenido por los métodos estandarizados o por otras metodologÃas propuestas en el estado del arte. Además, se propone una metodologÃa que posibilita la optimización conjunta de la configuración de los nodos de diferentes redes de acceso con el objetivo de maximizar la cobertura y la capacidad disponibles en estos nuevos escenarios.
Por otro lado, la segunda parte de la tesis se enfoca en el desarrollo de técnicas de auto-curación. Dado el despliegue de un gran número de nodos que recogen métricas de rendimiento, para los operadores es primordial conocer si dicho rendimiento está siendo correcto o hay algún fallo en la red. Por tanto, esta tesis propone un sistema de detección de anomalÃas capaz de alertar de una posible degradación en la red en tiempo real. En el caso de que un error en una celda no permita a esta continuar operando y que los usuarios cursando servicios crÃticos se queden fuera de cobertura, una acción compensatoria debe realizarse mientras que la celda está siendo arreglada. Con este fin se propone una técnica basada en aprendizaje por refuerzo para que robots de una fábrica de la Industria 4.0 continúen desempeñando correctamente su función sin el soporte de la red móvil