144 research outputs found

    Scaling the propulsive performance of heaving and pitching foils

    Full text link
    Scaling laws for the propulsive performance of rigid foils undergoing oscillatory heaving and pitching motions are presented. Water tunnel experiments on a nominally two-dimensional flow validate the scaling laws, with the scaled data for thrust, power, and efficiency all showing excellent collapse. The analysis indicates that the behaviour of the foils depends on both Strouhal number and reduced frequency, but for motions where the viscous drag is small the thrust closely follows a linear dependence on reduced frequency. The scaling laws are also shown to be consistent with biological data on swimming aquatic animals.Comment: 11 page

    Propulsive performance of oscillating plates with time-periodic flexibility

    Full text link
    We use small-amplitude inviscid theory to study the swimming performance of a flexible flapping plate with time-varying flexibility. The stiffness of the plate oscillates at twice the frequency of the kinematics in order to maintain a symmetric motion. Plates with constant and time-periodic stiffness are compared over a range of mean plate stiffness, oscillating stiffness amplitude, and oscillating stiffness phase for isolated heaving, isolated pitching, and combined leading edge kinematics. We find that there is a profound impact of oscillating stiffness on the thrust, with a lesser impact on propulsive efficiency. Thrust improvements of up to 35% relative to a constant-stiffness plate are observed. For large enough frequencies and amplitudes of the stiffness oscillation, instabilities emerge. The unstable regions may confer enhanced propulsive performance; this hypothesis must be verified via experiments or nonlinear simulations.Comment: 31 pages, 12 figure

    Building a Mach Zehnder Interferometer with Limited Resources

    Get PDF
    Interferometers are simple optical devices that function by splitting a coherent light beam. The beam is recombined using beam splitters and mirrors. The addition of the two light beams produces interference patterns in the forms of fringes which can be used to study the path taken by the two beams. This is old technology and we sought to construct an interferometer using rudimentary and cast-off equipment. The purpose is to show that modern physics concepts can be measured inexpensively and by undergraduate student design. Though we had no optics table and or optical mounts, by careful alignment and adjustments to the equipment, we were able to produce fringes whose intensity could measure phase changes of a light beam as it goes through various mediums. We were able to determine and learn more about the properties of light and produce successful results. This demonstrates a method of introducing modern physics lab applications at a low cost
    • …
    corecore