194 research outputs found
Modelling default and likelihood reasoning as probabilistic
A probabilistic analysis of plausible reasoning about defaults and about likelihood is presented. 'Likely' and 'by default' are in fact treated as duals in the same sense as 'possibility' and 'necessity'. To model these four forms probabilistically, a logic QDP and its quantitative counterpart DP are derived that allow qualitative and corresponding quantitative reasoning. Consistency and consequence results for subsets of the logics are given that require at most a quadratic number of satisfiability tests in the underlying propositional logic. The quantitative logic shows how to track the propagation error inherent in these reasoning forms. The methodology and sound framework of the system highlights their approximate nature, the dualities, and the need for complementary reasoning about relevance
Introduction to IND and recursive partitioning, version 1.0
This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, lists the manual pages for the routines, and instructions on installation
Introduction in IND and recursive partitioning
This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, and lists the manual pages for the routines and instructions on installation
Bibliographic Analysis on Research Publications using Authors, Categorical Labels and the Citation Network
Bibliographic analysis considers the author's research areas, the citation
network and the paper content among other things. In this paper, we combine
these three in a topic model that produces a bibliographic model of authors,
topics and documents, using a nonparametric extension of a combination of the
Poisson mixed-topic link model and the author-topic model. This gives rise to
the Citation Network Topic Model (CNTM). We propose a novel and efficient
inference algorithm for the CNTM to explore subsets of research publications
from CiteSeerX. The publication datasets are organised into three corpora,
totalling to about 168k publications with about 62k authors. The queried
datasets are made available online. In three publicly available corpora in
addition to the queried datasets, our proposed model demonstrates an improved
performance in both model fitting and document clustering, compared to several
baselines. Moreover, our model allows extraction of additional useful knowledge
from the corpora, such as the visualisation of the author-topics network.
Additionally, we propose a simple method to incorporate supervision into topic
modelling to achieve further improvement on the clustering task.Comment: Preprint for Journal Machine Learnin
Leveraging Node Attributes for Incomplete Relational Data
Relational data are usually highly incomplete in practice, which inspires us
to leverage side information to improve the performance of community detection
and link prediction. This paper presents a Bayesian probabilistic approach that
incorporates various kinds of node attributes encoded in binary form in
relational models with Poisson likelihood. Our method works flexibly with both
directed and undirected relational networks. The inference can be done by
efficient Gibbs sampling which leverages sparsity of both networks and node
attributes. Extensive experiments show that our models achieve the
state-of-the-art link prediction results, especially with highly incomplete
relational data.Comment: Appearing in ICML 201
- …