2 research outputs found

    The FTIR spectroscopy investigation of the cellular components of cassava after sensitization with plant growth promoting rhizobacteria, [i]Bacillus subtili[/i]s CaSUT007

    Get PDF
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699To evaluate the response of cassava stakes to plant growth promoting rhizobacteria, Bacillus subtilis CaSUT007, the changes in cellular compositions and phytohormone were investigated using the fourier transform infrared (FTIR) and high-performance liquid chromatography (HPLC) approach. The objective of this study was to test the hypothesis that CaSUT007 stimulates production of plant cellular components and phytohormone involved in metabolism and growth development mechanisms. Cassava stake treated with CaSUT007 or with sterile distilled water were germinated in sterile soil, after incubation for 28 days, CaSUT007 treated cassava stakes had more lateral root, longer roots, shoot length and greater biomass than the control which enhanced more than 1.3 fold of the cassava's phytohormone as indole-3-acetic acid content of non-treated control. We also focused on plant cellular composition and cassava stake tissues from the two treatments were harvested for FTIR analysis. FTIR analyses revealed that higher accumulated of lipid in response to the strain CaSUT007. The cassava stake treated with the beneficial bacteria B. subtilis strain CaSUT007 showed the higher content of the lipid content as (shown in the spectral regions of CH stretching and CH bending mode associated with cell membrane structure lipids) when compared with those of the cassava stake treated with distilled water. Our results initially demonstrated that CaSUT007 can enhance plant growth under greenhouse conditions by direct stimulation of plant lipid and phytohormone as indole-3-acetic acid production

    The plant growth promoting bacterium Bacillus sp. CaSUT007 produces phytohormone and extracellular proteins for enhanced growth of cassava

    No full text
    International audienceBacillus sp. strain CaSUT007, a plant growth promoting rhizobacterium isolated from cassava, was investigated for the secretion of compounds that might be involved in plant growth promotion. Extracts containing phytohormone and extracellular proteins were made from the cell-free fluid of CaSUT007 broth cultures. These extracts, along with a whole culture of CaSUT007 and the raw fluid and cellular fractions from a CaSUT007 culture, were applied separately to cassava stakes. The stakes were planted into pots of soil maintained in a greenhouse condition. Under this condition, all of the extracts including phytohormones and extracellular proteins increased root and shoot lengths and cassava biomass as compared to negative control. Our results indicate that the culture extracts, when applied to cassava stakes, increased root and shoot lengths by more than 30%, and increased fresh and dry weights by more than 25% compared to the distilled water control. Thus, photohormone and extracellular proteins secreted by CaSUT007 can influence plant growth and development. Analysis of the photohormone and extracellular proteins extracts revealed indole-3-acetic acid and peptides to be the primary compounds
    corecore