14,118 research outputs found

    How to Regulate Vertical Market Structure in Network Industries

    Get PDF
    This paper analyzes the equilibrium outcomes in a network industry under different vertical market structures. In this industry, an upstream monopolist operates a network used as an input to produce horizontally differentiated final products that are imperfect substitutes. Three potential drawbacks of market structure regulation are analyzed: (i) double marginalization, (ii) underinvestment, and (iii) vertical foreclosure. We explore the conditions under which these effects emerge and discuss when the breakup of an integrated network monopolist is adequate.access pricing, investment, vertical foreclosure

    On Interference Alignment and the Deterministic Capacity for Cellular Channels with Weak Symmetric Cross Links

    Full text link
    In this paper, we study the uplink of a cellular system using the linear deterministic approximation model, where there are two users transmitting to a receiver, mutually interfering with a third transmitter communicating with a second receiver. We give an achievable coding scheme and prove its optimality, i.e. characterize the capacity region. This scheme is a form of interference alignment which exploits the channel gain difference of the two-user cell.Comment: Submitted to IEEE International Symposium on Information Theory (ISIT) 2011, 5 page

    Scale dependence and collinear subtraction terms for Higgs production in gluon fusion at N3LO

    Full text link
    The full, explicit, scale dependence of the inclusive N3LO cross section for single Higgs hadroproduction is obtained by calculating the convolutions of collinear splitting kernels with lower-order partonic cross sections. We provide results for all convolutions of splitting kernels and lower-order partonic cross sections to the order in epsilon needed for the full N3LO computation, as well as their expansions around the soft limit. We also discuss the size of the total scale uncertainty at N3LO that can be anticipated with existing information.Comment: 27 pages, 8 figure, 1 table, 8 ancillary files. v2: added 4 references, changed labelling of contour plot

    Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in intermediate filament protein networks

    Get PDF
    Proteins constitute the elementary building blocks of a vast variety of biological materials such as cellular protein networks, spider silk or bone, where they create extremely robust, multi-functional materials by self-organization of structures over many length- and time scales, from nano to macro. Some of the structural features are commonly found in a many different tissues, that is, they are highly conserved. Examples of such universal building blocks include alpha-helices, beta-sheets or tropocollagen molecules. In contrast, other features are highly specific to tissue types, such as particular filament assemblies, beta-sheet nanocrystals in spider silk or tendon fascicles. These examples illustrate that the coexistence of universality and diversity – in the following referred to as the universality-diversity paradigm (UDP) – is an overarching feature in protein materials. This paradigm is a paradox: How can a structure be universal and diverse at the same time? In protein materials, the coexistence of universality and diversity is enabled by utilizing hierarchies, which serve as an additional dimension beyond the 3D or 4D physical space. This may be crucial to understand how their structure and properties are linked, and how these materials are capable of combining seemingly disparate properties such as strength and robustness. Here we illustrate how the UDP enables to unify universal building blocks and highly diversified patterns through formation of hierarchical structures that lead to multi-functional, robust yet highly adapted structures. We illustrate these concepts in an analysis of three types of intermediate filament proteins, including vimentin, lamin and keratin

    Asymmetric soft-error resistant memory

    Get PDF
    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code

    Flaw-tolerance in silk fibrils explains strength, extensibility and toughness of spider silk

    Get PDF
    Silk is an ancient but remarkably strong, extensible and tough material made from simple protein building blocks. Earlier work has shown that the particular molecular geometry of silk with a composite of semi-amorphous and nanocrystalline beta-sheet protein domains provides the structural basis for its characteristic softening-stiffening behavior and remarkable strength at the nanoscale. Yet, an open question remains as to how these nanoscale properties are upscaled so effectively to create strong, extensible and tough silk fibers. Here we discover that the geometric confinement of fibrils to ≈50-100 nm width and arranged in bundles to form larger-scale silk fibers, is the key to explaining the upscaling of the mechanical properties of silk from the atomistic scale upwards. We find that under this geometric confinement, hundreds of thousands of protein domains unfold simultaneously and thereby act synergistically to resist deformation and failure, providing access to enhanced large-scale strength, extensibility and toughness. Moreover, since the material is in a flaw-tolerant state under this geometric confinement, structural inhomogeneities such as cavities or tears that typically act as stress concentrators do not compromise the material performance. Indeed, experimental work showed that the diameter of silk fibrils that make up larger-scale silk fibers are on the order of 20-100 nm, in agreement with our findings. The exploitation of this mechanism in engineering design enables the synthesis of hierarchical fiber materials for superior performance despite limited and inferior building blocks
    corecore