140 research outputs found

    The 8 o'clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data

    Get PDF
    We report on the serendipitous discovery of the brightest Lyman Break Galaxy (LBG) currently known, a galaxy at z=2.73 that is being strongly lensed by the z=0.38 Luminous Red Galaxy (LRG) SDSS J002240.91+143110.4. The arc of this gravitational lens system, which we have dubbed the "8 o'clock arc" due to its time of discovery, was initially identified in the imaging data of the Sloan Digital Sky Survey Data Release 4 (SDSS DR4); followup observations on the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system and led to the identification of the arc's spectrum as that of an LBG. The arc has a spectrum and a redshift remarkably similar to those of the previous record-holder for brightest LBG (MS 1512-cB58, a.k.a "cB58"), but, with an estimated total magnitude of (g,r,i) = (20.0,19.2,19.0) and surface brightness of (mu_g,mu_r,mu_i) = (23.3, 22.5, 22.3) mag/arcsec^2, the 8 o'clock arc is thrice as bright. The 8 o'clock arc, which consists of three lensed images of the LBG, is 162deg (9.6arcsec) long and has a length-to-width ratio of 6:1. A fourth image of the LBG -- a counter-image -- can also be identified in the ARC 3.5m g-band images. A simple lens model for the system assuming a singular isothermal ellipsoid potential yields an Einstein radius of 2.91+/-0.14 arcsec, a total mass for the lensing LRG (within the (10.6+/-0.5)/h kpc enclosed by the lensed images) of 1.04x10^12/h Msun, and a magnification factor for the LBG of 12.3(+15/-3.6). The LBG itself is intrinsically quite luminous (approximately 6L*) and shows indications of massive recent star formation, perhaps as high as 160/h Msun/year.Comment: 4 pages 5 figures, submitted to ApJ Letter

    The Sloan Bright Arcs Survey : Six Strongly Lensed Galaxies at z=0.4-1.4

    Get PDF
    We present new results of our program to systematically search for strongly lensed galaxies in the Sloan Digital Sky Survey (SDSS) imaging data. In this study six strong lens systems are presented which we have confirmed with follow-up spectroscopy and imaging using the 3.5m telescope at the Apache Point Observatory. Preliminary mass models indicate that the lenses are group-scale systems with velocity dispersions ranging from 466-878 km s^{-1} at z=0.17-0.45 which are strongly lensing source galaxies at z=0.4-1.4. Galaxy groups are a relatively new mass scale just beginning to be probed with strong lensing. Our sample of lenses roughly doubles the confirmed number of group-scale lenses in the SDSS and complements ongoing strong lens searches in other imaging surveys such as the CFHTLS (Cabanac et al 2007). As our arcs were discovered in the SDSS imaging data they are all bright (r22r\lesssim22), making them ideally suited for detailed follow-up studies.Comment: 13 pages, 3 figures, submitted to ApJL, the Sloan Bright Arcs page is located here: http://home.fnal.gov/~kubo/brightarcs.htm

    The Sloan Bright Arcs Survey: Four Strongly Lensed Galaxies with Redshift >2

    Full text link
    We report the discovery of four very bright, strongly-lensed galaxies found via systematic searches for arcs in Sloan Digital Sky Survey Data Release 5 and 6. These were followed-up with spectroscopy and imaging data from the Astrophysical Research Consortium 3.5m telescope at Apache Point Observatory and found to have redshift z>2.0z>2.0. With isophotal magnitudes r=19.220.4r = 19.2 - 20.4 and 3\arcsec-diameter magnitudes r=20.020.6r = 20.0 - 20.6, these systems are some of the brightest and highest surface brightness lensed galaxies known in this redshift range. In addition to the magnitudes and redshifts, we present estimates of the Einstein radii, which range from 5.0 \arcsec to 12.7 \arcsec, and use those to derive the enclosed masses of the lensing galaxies

    Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z~2

    Full text link
    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest-frame 3600 to 6800AA, including robust detections of fainter lines such as H-gamma, [SII]6717,6732, and in one instance [NeII]3869. SDSS J090122.37+181432.3 shows evidence for AGN activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties, including star-formation rate (SFR), metallicity, dynamical mass, and dust extinction. In all respects, the lensed objects appear fairly typical of UV-selected star-forming galaxies at z~2. The Clone occupies a position on the emission-line diagnostic diagram of [OIII]/H-beta vs. [NII]/H-alpha that is offset from the locations of z~0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [SII] line ratio, high electron densities (~1000 cm^(-3)) are inferred compared to local galaxies, and [OIII]/[OII] line ratios indicate higher ionization parameters compared to the local population. Building on previous similar results at z~2, these measurements provide further evidence (at high S/N) that star-forming regions are significantly different in high-redshift galaxies, compared to their local counterparts (abridged).Comment: 16 pages, 8 figures. Accepted for publication in the Astrophysical Journa

    Discovery of A Very Bright, Strongly-Lensed z=2 Galaxy in the SDSS DR5

    Get PDF
    We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z=0.422 luminous red galaxy (LRG). This system was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of 3.82 +/- 0.03 arcsec or 14.8 +/- 0.1 kpc/h at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 +/- 0.03 x 10^12 M_sun/h, and the magnification factor for the source galaxy is 27 +/- 1. Combining the lens model with our gVriz photometry, we find an (unlensed) star formation rate for the source galaxy of 32 M_sun/h / yr, adopting a fiducial constant star formation rate model with an age of 100 Myr and E(B-V) = 0.25. With an apparent magnitude of r = 19.9, this system is among the very brightest lensed z >= 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy.Comment: 31 pages, 12 figures, 4 tables, submitted to Ap
    corecore