15 research outputs found
The relentless variability of Mrk 421 from the TeV to the radio
The origin of the gamma-ray emission of the blazar Mrk 421 is still a matter
of debate. We used 5.5 years of unbiased observing campaign data, obtained
using the FACT telescope and the Fermi LAT detector at TeV and GeV energies,
the longest and densest so far, together with contemporaneous multi-wavelength
observations, to characterise the variability of Mrk 421 and to constrain the
underlying physical mechanisms. We studied and correlated light curves obtained
by ten different instruments and found two significant results. The TeV and
X-ray light curves are very well correlated with a lag of <0.6 days. The GeV
and radio (15 Ghz band) light curves are widely and strongly correlated.
Variations of the GeV light curve lead those in the radio. Lepto-hadronic and
purely hadronic models in the frame of shock acceleration predict proton
acceleration or cooling timescales that are ruled out by the short variability
timescales and delays observed in Mrk 421. Instead the observations match the
predictions of leptonic models.Comment: 10 pages, 8 figures, 1 tabl
Fractional variability—a tool to study blazar variability
Active Galactic Nuclei emit radiation over the whole electromagnetic spectrum up to TeV energies. Blazars are one subtype with their jets pointing towards the observer. One of their typical features is extreme variability on timescales, from minutes to years. The fractional variability is an often used parameter for investigating the degree of variability of a light curve. Different detection methods and sensitivities of the instruments result in differently binned data and light curves with gaps. As they can influence the physics interpretation of the broadband variability, the effects of these differences on the fractional variability need to be studied. In this paper, we study the systematic effects of completeness in time coverage and the sampling rate. Using public data from instruments monitoring blazars in various energy ranges, we study the variability of the bright TeV blazars Mrk 421 and Mrk 501 over the electromagnetic spectrum, taking into account the systematic effects, and compare our findings with previous results. Especially in the TeV range, the fractional variability is higher than in previous studies, which can be explained by the much longer (seven years compared to few weeks) and more complete data sample
FACT - Multi-wavelength analysis of more than 30 flares of Mrk 421
Mrk 421 is a high-synchrotron-peaked blazar featuring bright and persistent GeV and TeV emission. We use multi-wavelength light curves of Mrk 421 spanning 5.5 years with FACT (TeV) and Fermi LAT (GeV) in the gamma rays, Swift BAT, Swift XRT and MAXI in the X-rays, together with optical and radio data and investigate the physical processes driving the emission and variability. Observations by FACT are continuous and not triggered, so the source was found in a wide range of flux states and more than 30 flares were identified from X-rays to TeV. The light curves in TeV and X-rays feature very similar flares with rise and decay times of a few days and zero lag, characteristic for electron processes. At least two parameters per flare, the amplitude and the cut-off energy, are required to explain the observed variability. In addition, the GeV light curve leads and is strongly correlated with the optical and radio light curves as expected from SSC emitting shock propagating in a conical jet.ISSN:1824-803
5.5 years multi-wavelength variability of Mrk 421: evidences of leptonic emission from the radio to TeV
Mrk 421 is a high-synchrotron-peaked blazar featuring bright and persistent GeV and TeV emission. We use the longest and densest ongoing unbiased observing campaign obtained at TeV and GeV energies during 5.5 years with the FACT telescope and the Fermi-LAT detector. The contemporaneous multi-wavelength observations were used to characterize the variability of the source and to constrain the underlying physical mechanisms. We study and correlate light curves obtained by nine different instruments from radio to gamma rays and found two significant results. The TeV and X-ray light curves are very well correlated with lag, if any, shorter than a day. The GeV light curve varies independently and accurately leads the variations observed at long wavelengths, in particular in the radio band. We find that the observations match the predictions of leptonic models and suggest that the physical conditions vary along the jet, when the emitting region moves outwards.ISSN:1824-803
Flux States of Active Galactic Nuclei
Blazars are known to show variability on time scales from minutes to years covering a wide range of flux states. Studying the flux distribution of a source allows for various insights. The shape of the flux distribution can provide information on the nature of the underlying variability processes. The level of a possible quiescent state can be derived from the main part of the distribution that can be described by a Gaussian distribution. Dividing the flux states into quiescent and active, the duty cycle of a source can be calculated. Finally, this allows alerting the multi-wavelength and multi-messenger community in case a source is in an active state. To get consistent and conclusive results from flux distributions, unbiased long-term observations are crucial. Only like this is a complete picture of the variability and flux states, e.g., an all-time quiescent state, possible. In seven years of monitoring of bright TeV blazars, the first G-APD Cherenkov telescope (FACT) has collected a total of more than 11,700 hours of physics data with 1500 hours to 3000 hours per source for Mrk 421, Mrk 501, 1ES 1959+650, and 1ES 2344+51
Fractional Variability—A Tool to Study Blazar Variability
Active Galactic Nuclei emit radiation over the whole electromagnetic spectrum up to TeV energies. Blazars are one subtype with their jets pointing towards the observer. One of their typical features is extreme variability on timescales, from minutes to years. The fractional variability is an often used parameter for investigating the degree of variability of a light curve. Different detection methods and sensitivities of the instruments result in differently binned data and light curves with gaps. As they can influence the physics interpretation of the broadband variability, the effects of these differences on the fractional variability need to be studied. In this paper, we study the systematic effects of completeness in time coverage and the sampling rate. Using public data from instruments monitoring blazars in various energy ranges, we study the variability of the bright TeV blazars Mrk 421 and Mrk 501 over the electromagnetic spectrum, taking into account the systematic effects, and compare our findings with previous results. Especially in the TeV range, the fractional variability is higher than in previous studies, which can be explained by the much longer (seven years compared to few weeks) and more complete data sample