162,076 research outputs found

    The Compositions of Kuiper Belt Objects

    Get PDF
    Objects in the Kuiper belt are small and far away thus difficult to study in detail even with the best telescopes available at earth. For much of the early history of the Kuiper belt, studies of the compositions of these objects were relegated to collections of moderate quality spectral and photometric data that remained difficult to interpret. Much early effort was put into simple correlations of surface colors and identifications of spectral features, but it was difficult to connect the observations to a larger understanding of the region. The last decade, however, has seen a blossoming in our understanding of the compositions of objects in the Kuiper belt. This blossoming is a product of the discoveries of larger -- and thus easier to study -- objects, continued dedication to the collection of a now quite large collection of high quality photometric and spectroscopic observations, and continued work at the laboratory and theoretical level. Today we now know of many processes which affect the surface compositions of objects in the Kuiper belt, including atmospheric loss, differentiation and cryovolcanism, radiation processing, the effects of giant impacts, and the early dynamical excitation of the Kuiper belt. We review the large quantity of data now available and attempt to build a comprehensive framework for understanding the surface compositions and their causes. In contrast to surface compositions, the bulk compositions of objects in the Kuiper belt remain poorly measured and even more poorly understood, but prospects for a deeper understanding of the formation of the the outer solar are even greater from this subject.Comment: 38 pages, 10 figures, to appear in Annual Reviews of Earth and Planetary Science

    Water hexamer: Self-consistent phonons versus reversible scaling versus replica exchange molecular dynamics

    Full text link
    Classical free energies for the cage and prism isomers of water hexamer computed by the self- consistent phonons (SCP) method and reversible scaling (RS) method are presented for several flexible water potentials. Both methods have been augmented with a rotational correction for improved accuracy when working with clusters. Comparison of the SCP results with the RS results suggests a fairly broad temperature range over which the SCP approximation can be expected to give accurate results for systems of water clusters, and complements a previously reported assessment of SCP. Discrepancies between the SCP and RS results presented here, and recently published replica exchange molecular dynamics (REMD) results bring into question the convergence of the REMD and accompanying replica exchange path integral molecular dynamics results. In addition to the ever-present specter of unconverged results, several possible sources for the discrepancy are explored based on inherent characteristics of the methods used.Comment: Submitted to Journal Chemical Physic

    Anomalous quantum and isotope effects in water clusters: Physical phenomenon, model artifact, or bad approximation?

    Full text link
    Free energy differences ΔF:=FFprism\Delta F:=F-F_{\text{prism}} are computed for several isomers of water hexamer relative to the "prism" isomer using the self-consistent phonons method. %ΔF:=FF(prism)\Delta F:=F-F({prism}) We consider the isotope effect defined by the quantity δFD2O:=ΔFD2OΔFH2O\delta F_{D_2O}:=\Delta F_{\rm D_2O}-\Delta F_{\rm H_2O}, and the quantum effect, δF=0:=ΔF=0ΔFH2O\delta F_{\hbar=0}:=\Delta F_{\hbar=0}-\Delta F_{\rm H_2O}, and evaluate them using different flexible water models. While both δFD2O\delta F_{D_2O} and δF=0\delta F_{\hbar=0} are found to be rather small for all of the potentials, they are especially small for two of the empirical models, q-TIP4P/F and TTM3-F, compared to q-SPC/Fw and the two {\it abinitio}-based models, WHBB and HBB2-pol. This qualitative difference in the properties of different water models cannot be explained by one being "more accurate" than the other. We speculate as to whether the observed anomalies are caused by the special properties of water systems, or are an artifact of either the potential energy surface form/parametrization or the numerical approximation used.Comment: Submitted to Journal of Chemical Physic

    The Radial Distribution of the Kuiper Belt

    Get PDF
    We examine the radial distribution of the Kuiper Belt objects (KBOs) using a method that is insensitive to observational bias effects. This technique allows the use of the discovery distances of all KBOs, independent of orbital classification or discovery circumstance. We verify the presence of an outer edge to the Kuiper Belt, as reported in other works, and we measure this edge to be at R = 47 ± 1 AU given any physically plausible model of the size distribution. We confirm that this outer edge is due to the classical KBOs, the most numerically dominant observationally. In addition, we find that current surveys do not preclude the presence of a second, unobserved Kuiper Belt beyond R = 76 AU

    Resonant relativistic corrections and the A_y problem

    Get PDF
    We study relativistic corrections to nuclear interactions caused by boosting the two-nucleon interaction to a frame in which their total momentum does not vanish. These corrections induce a change in the computed value of the neutron-deuteron analyzing power A_y that is estimated using the plane-wave impulse approximation. This allows a transparent analytical calculation that demonstrates the significance of relativistic corrections. Faddeev calculations are however needed to conclude on the A_y puzzle.Comment: 8 pages, 2 figures, minor addition, to appear in Phys. Rev.

    Near-Infrared Spectroscopy of the Bright Kuiper Belt Object 2000 EB173

    Get PDF
    We have obtained a near-infrared spectrum of the bright Kuiper Belt object 2000 EB173; the spectrum appears featureless. The spectrum has a sufficient signal-to-noise ratio to rule out the 1.5 and 2.0 μm absorption from water ice even at the low level seen in the Centaur Chariklo. In addition, we can rule out a 2.3 μm absorption at the level seen in the Centaur Pholus
    corecore