14 research outputs found

    Coronary CT Angiography and 5-Year Risk of Myocardial Infarction.

    Get PDF
    BACKGROUND: Although coronary computed tomographic angiography (CTA) improves diagnostic certainty in the assessment of patients with stable chest pain, its effect on 5-year clinical outcomes is unknown. METHODS: In an open-label, multicenter, parallel-group trial, we randomly assigned 4146 patients with stable chest pain who had been referred to a cardiology clinic for evaluation to standard care plus CTA (2073 patients) or to standard care alone (2073 patients). Investigations, treatments, and clinical outcomes were assessed over 3 to 7 years of follow-up. The primary end point was death from coronary heart disease or nonfatal myocardial infarction at 5 years. RESULTS: The median duration of follow-up was 4.8 years, which yielded 20,254 patient-years of follow-up. The 5-year rate of the primary end point was lower in the CTA group than in the standard-care group (2.3% [48 patients] vs. 3.9% [81 patients]; hazard ratio, 0.59; 95% confidence interval [CI], 0.41 to 0.84; P=0.004). Although the rates of invasive coronary angiography and coronary revascularization were higher in the CTA group than in the standard-care group in the first few months of follow-up, overall rates were similar at 5 years: invasive coronary angiography was performed in 491 patients in the CTA group and in 502 patients in the standard-care group (hazard ratio, 1.00; 95% CI, 0.88 to 1.13), and coronary revascularization was performed in 279 patients in the CTA group and in 267 in the standard-care group (hazard ratio, 1.07; 95% CI, 0.91 to 1.27). However, more preventive therapies were initiated in patients in the CTA group (odds ratio, 1.40; 95% CI, 1.19 to 1.65), as were more antianginal therapies (odds ratio, 1.27; 95% CI, 1.05 to 1.54). There were no significant between-group differences in the rates of cardiovascular or noncardiovascular deaths or deaths from any cause. CONCLUSIONS: In this trial, the use of CTA in addition to standard care in patients with stable chest pain resulted in a significantly lower rate of death from coronary heart disease or nonfatal myocardial infarction at 5 years than standard care alone, without resulting in a significantly higher rate of coronary angiography or coronary revascularization. (Funded by the Scottish Government Chief Scientist Office and others; SCOT-HEART ClinicalTrials.gov number, NCT01149590 .)

    Invasive versus medical management in patients with prior coronary artery bypass surgery with a non-ST segment elevation acute coronary syndrome: a pilot randomized controlled trial

    Get PDF
    Background: The benefits of routine invasive management in patients with prior coronary artery bypass grafts presenting with non-ST elevation acute coronary syndromes are uncertain because these patients were excluded from pivotal trials. Methods: In a multicenter trial, non-ST elevation acute coronary syndromes patients with prior coronary artery bypass graft were prospectively screened in 4 acute hospitals. Medically stabilized patients were randomized to invasive management (invasive group) or noninvasive management (medical group). The primary outcome was adherence with the randomized strategy by 30 days. A blinded, independent Clinical Event Committee adjudicated predefined composite outcomes for efficacy (all-cause mortality, rehospitalization for refractory ischemia/angina, myocardial infarction, hospitalization because of heart failure) and safety (major bleeding, stroke, procedure-related myocardial infarction, and worsening renal function). Results: Two hundred seventeen patients were screened and 60 (mean±SD age, 71±9 years, 72% male) were randomized (invasive group, n=31; medical group, n=29). One-third (n=10) of the participants in the invasive group initially received percutaneous coronary intervention. In the medical group, 1 participant crossed over to invasive management on day 30 but percutaneous coronary intervention was not performed. During 2-years’ follow-up (median [interquartile range], 744 [570–853] days), the composite outcome for efficacy occurred in 13 (42%) subjects in the invasive group and 13 (45%) subjects in the medical group. The composite safety outcome occurred in 8 (26%) subjects in the invasive group and 9 (31%) subjects in the medical group. An efficacy or safety outcome occurred in 17 (55%) subjects in the invasive group and 16 (55%) subjects in the medical group. Health status (EuroQol 5 Dimensions) and angina class in each group were similar at 12 months. Conclusions: More than half of the population experienced a serious adverse event. An initial noninvasive management strategy is feasible. A substantive health outcomes trial of invasive versus noninvasive management in non-ST elevation acute coronary syndromes patients with prior coronary artery bypass grafts appears warranted. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01895751

    Invasive versus medically managed acute coronary syndromes with prior bypass (CABG-ACS): insights into the registry versus randomised trial populations

    Get PDF
    Background: Coronary artery bypass graft (CABG) patients are under-represented in acute coronary syndrome (ACS) trials. We compared characteristics and outcomes for patients who did and did not participate in a randomised trial of invasive versus non-invasive management (CABG-ACS). Methods: ACS patients with prior CABG in four hospitals were randomised to invasive or non-invasive management. Non-randomised patients entered a registry. Primary efficacy (composite of all-cause mortality, rehospitalisation for refractory ischaemia/angina, myocardial infarction (MI), heart failure) and safety outcomes (composite of bleeding, stroke, procedure-related MI, worsening renal function) were independently adjudicated. Results: Of 217 patients screened, 84 (39%) screenfailed, of whom 24 (29%) did not consent and 60 (71%) were ineligible. Of 133 (61%) eligible, 60 (mean±SD age, 71±9 years, 72% male) entered the trial and 73 (age, 72±10 years, 73% male) entered a registry (preferences: physician (79%), patient (38%), both (21%)). Compared with trial participants, registry patients had more valve disease, lower haemoglobin, worse New York Heart Association class and higher frailty. At baseline, invasive management was performed in 52% and 49% trial and registry patients, respectively, of whom 32% and 36% had percutaneous coronary intervention at baseline, respectively (p=0.800). After 2 years follow-up (694 (median, IQR 558–841) days), primary efficacy (43% trial vs 49% registry (HR 1.14, 95% CI 0.69 to 1.89)) and safety outcomes (28% trial vs 22% registry (HR 0.74, 95% CI 0.37 to 1.46)) were similar. EuroQol was lower in registry patients at 1 year. Conclusions: Compared with trial participants, registry participants had excess morbidity, but longer-term outcomes were similar. Trial registration number: NCT01895751

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Non-Invasive Versus Invasive Management in Patients With Prior Coronary Artery Bypass Surgery With a Non-ST Segment Elevation Acute Coronary Syndrome: Comparisons Between the Randomized Controlled Pilot Trial and Registry

    No full text
    Background: Elderly patients with multi-morbidity are often under-represented in clinical trials. The CABG-ACS pilot trial (NCT01895751) prospectively assessed reasons for entering the trial or registry and subsequent outcomes. Methods: Patients with a non-ST segment elevation acute coronary syndrome (NSTE-ACS) and prior coronary artery bypass graft (CABG) admitted to 4 hospitals were randomized to invasive or non-invasive management. Non-randomized patients entered a follow-up registry. The primary efficacy outcome was a composite of all-cause death, rehospitalization for refractory ischemia/angina, myocardial infarction (MI) and hospitalization due to heart failure. The primary safety outcome was the composite of bleeding, stroke, procedure-related MI and worsening renal function. A blinded Clinical Event Committee independently assessed events. EuroQol-5 Dimensions (EQ-5D) was assessed at 6 monthly intervals for ≥18 months. Results: 217 patients with prior CABG and unplanned hospitalization for suspected ACS were screened. 84 subjects did not consent (≥1 reasons): 43 not NSTE-ACS, 35 unsuitable for invasive management, 9 refractory ischemia, 3 unable to consent. Of 133 eligible subjects, 60 (mean±SD age 71±9 years, 28% female) entered the trial and 73 (age 72±10 years, 27% female) entered the registry (preferences: physician 79%, patient 40% or both 18%). Compared to trial patients, registry patients had significantly more valve disease, lower hemoglobin, worse New York Heart Association class and higher frailty index. Baseline EQ-5D, medications and left internal mammary artery grafts were similar. Registry patients had significantly more medication changes due to recurrent angina and more urgent inpatient invasive procedures. The primary efficacy outcome occurred in 49% registry vs. 43% trial patients (HR (95% CI) 1.12 (0.77,1.63); p=0.601). Primary safety outcomes were similar (22% registry vs. 28% trial; HR 0.76 (0.42,1.38); p=0.425). EQ-5D health status was lower in the registry at 6 months (p=0.011) but not at 1 year (p=0.068). Conclusion: Compared to trial patients, the registry had excess morbidity but their longer term health outcomes were similar

    Routine Non-invasive vs Invasive Management in Patients With Prior CABG With a NSTE-ACS: a Randomised Controlled Trial

    No full text
    Background: There is an evidence-gap about how to best treat patients with a history of prior CABG presenting with a NSTE-ACS because these patients were excluded from key randomised trials. Methods: The CABG-ACS pilot trial (NCT01895751) randomised patients with a NSTE-ACS and prior CABG to routine invasive or non-invasive management. The primary efficacy outcome was a composite of all-cause death, rehospitalisation for refractory ischaemia/angina, MI and HF hospitalisation. The primary safety outcome was a composite of bleeding, stroke, procedure-related MI and worsening renal function. A CEC assessed events. Results: 60 patients (mean ±SD age 71±9 years, 28% female) were randomised to invasive (n=31) or non-invasive (n=29) management. The invasive group had worse NYHA class (p=0.044) and less valve disease (17% vs 27%; p=0.035). Other comorbidities, age, sex, CCS grade, frailty score and medications were similar. Baseline LIMA grafts were similar (p=0.720). All invasive group patients had invasive management (mean BCIS-1 Jeopardy Score 7±4) and 6 (19%) had PCI. 6 non-invasive group patients ended up having invasive management and 3 (50%) had PCI. No patients had redo CABG. The primary efficacy outcome occurred in 42% invasive vs 45% non-invasive groups (RR (95% CI) 0.94 (0.52, 1.67); p=1.000). The primary safety outcome occurred in 26% invasive vs 31% non-invasive groups (RR 0.83 (0.37, 1.86); p=0.777). EQ-5D was similar at 1 year. Conclusion: Compared with routine non-invasive management, a strategy of routine invasive management was not associated with patient benefits

    CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label,parallel-group, multicentre trial

    Get PDF
    Background The benefi t of CT coronary angiography (CTCA) in patients presenting with stable chest pain has not been systematically studied. We aimed to assess the eff ect of CTCA on the diagnosis, management, and outcome of patients referred to the cardiology clinic with suspected angina due to coronary heart disease. Methods In this prospective open-label, parallel-group, multicentre trial, we recruited patients aged 18–75 years referred for the assessment of suspected angina due to coronary heart disease from 12 cardiology chest pain clinics across Scotland. We randomly assigned (1:1) participants to standard care plus CTCA or standard care alone. Randomisation was done with a web-based service to ensure allocation concealment. The primary endpoint was certainty of the diagnosis of angina secondary to coronary heart disease at 6 weeks. All analyses were intention to treat, and patients were analysed in the group they were allocated to, irrespective of compliance with scanning. This study is registered with ClinicalTrials.gov, number NCT01149590. Findings Between Nov 18, 2010, and Sept 24, 2014, we randomly assigned 4146 (42%) of 9849 patients who had been referred for assessment of suspected angina due to coronary heart disease. 47% of participants had a baseline clinic diagnosis of coronary heart disease and 36% had angina due to coronary heart disease. At 6 weeks, CTCA reclassifi ed the diagnosis of coronary heart disease in 558 (27%) patients and the diagnosis of angina due to coronary heart disease in 481 (23%) patients (standard care 22 [1%] and 23 [1%]; p<0·0001). Although both the certainty (relative risk [RR] 2·56, 95% CI 2·33–2·79; p<0·0001) and frequency of coronary heart disease increased (1·09, 1·02–1·17; p=0·0172), the certainty increased (1·79, 1·62–1·96; p<0·0001) and frequency seemed to decrease (0·93, 0·85–1·02; p=0·1289) for the diagnosis of angina due to coronary heart disease. This changed planned investigations (15% vs 1%; p<0·0001) and treatments (23% vs 5%; p<0·0001) but did not aff ect 6-week symptom severity or subsequent admittances to hospital for chest pain. After 1·7 years, CTCA was associated with a 38% reduction in fatal and nonfatal myocardial infarction (26 vs 42, HR 0·62, 95% CI 0·38–1·01; p=0·0527), but this was not signifi cant. Interpretation In patients with suspected angina due to coronary heart disease, CTCA clarifi es the diagnosis, enables targeting of interventions, and might reduce the future risk of myocardial infarction. Funding The Chief Scientist Offi ce of the Scottish Government Health and Social Care Directorates funded the trial with supplementary awards from Edinburgh and Lothian’s Health Foundation Trust and the Heart Diseases Research Fund
    corecore