269 research outputs found

    Preclinical PET imaging of antibody therapies for cancer

    Get PDF
    Monoclonal antibodies have become important in the systemic treatment of cancer. They are applied in different ways. Among antibodies, the immune checkpoint inhibitors now play a clear role by activating the immune system. Antibodies can also be charged with a cytotoxic or radioactive payload. The antibody-drug conjugates (ADCs) are obtaining a firm role in treating patients with cancer. And increasingly studies are ongoing with antibodies radiolabeled with beta- (especially lutetium-177) and alpha-emitting radionuclides. For so-called targeted alpha therapy, alpha particle emitting radionuclides, e.g., thorium-227(227Th), or actinium-225 (225Ac) are coupled to tumor-targeting monoclonal antibodies. As for all systemic treatments, treatment with antibodies does not benefit all patients. It may help to understand the whole-body behavior of these antibodies, shedding light on their unique target-mediated distribution and heterogeneous tumor-targeting. Positron emission tomography (PET) could visualize whole-body distribution, noninvasively, of zirconium-89 (89Zr) labeled antibody therapies. Access to therapeutic antibodies is globally limited because they are expensive. The availability and use of monoclonal antibody biosimilars could potentially retain the healthcare costs of these expensive drugs. The research in this thesis focussed on monoclonal antibodies and aiming to identify challenges for monoclonal antibody biosimilars in cancer and explore preclinical 89Zr PET imaging of antibody therapies to evaluate their in vivo behavior, e.g., biodistribution, tumor uptake, and pharmacodynamics

    (Genetic) Epidemiology of Aging

    Get PDF
    Longevity is usually defined as age at death or survival to an exceptional age, such as 90 years or older or even 100 years or older. In the past century, most Western countries have experienced substantial increases in life expectancy. This has been mostly due to a marked reduction in early life mortality during the first half of the twentieth century, followed by an almost twofold reduction in mortality at ages above 70 years in the past 50 years (Figure 1; source: CBS). Longevity is a complex phenotype to which both environmental factors such as lifestyle and genetic factors are known to contribute. The genetic contribution to age at death has been estimated to range from 15 to 25%, and up to 40% for reaching longevity, suggesting a significant but relatively modest genetic contribution to the human lifespan. However, the clustering of extreme a

    Developing a Shared Understanding: Paraeducator Supports for Students with Disabilities in General Education

    Get PDF
    In order for groups of people to become effective teams it is vital that they develop a shared understanding of the underlying beliefs, values, and principles that will guide their work together. This shared understanding evolves over time as members learn about each other, spend time together, and engage in the work of their group. Having a shared understanding provides a basic structure within which teams: • develop common goals; determine actions that will lead toward the attainment of their goals; ensure that their actions are consistent with their beliefs; and judge whether their efforts have been successful

    Burden of genetic risk variants in multiple sclerosis families in the Netherlands

    Get PDF
    Background: Approximately 20% of multiple sclerosis patients have a family history of multiple sclerosis. Studies of multiple sclerosis aggregation in families are inconclusive. Objective: To investigate the genetic burden based on currently discovered genetic variants for multiple sclerosis risk in patients from Dutch multiple sclerosis multiplex families versus sporadic multiple sclerosis cases, and to study its influence on clinical phenotype and disease prediction. Methods: Our study population consisted of 283 sporadic multiple sclerosis cases, 169 probands from multiplex families and 2028 controls. A weighted genetic risk score based on 102 non-human leukocyte antigen loci and HLA-DRB1*1501 was calculated. Results: The weighted genetic risk score based on all loci was significantly higher in familial than in sporadic cases. The HLA-DRB1*1501 contributed significantly to the difference in genetic burden between the groups. A high weighted genetic risk score was significantly associated with a low age of disease onset in all multiple sclerosis patients, but not in the familial cases separately. The genetic risk score was significantly but modestly better in discriminating familial versus sporadic multiple sclerosis from controls. Conclusion: Familial multiple sclerosis patients are more loaded with the common genetic variants than sporadic cases. The difference is mainly driven by HLA-DRB1*1501. The predictive capacity of genetic loci is poor and unlikely to be useful in clinical settings.</p

    Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss

    Get PDF
    Hearing loss is one of the top contributors to years lived with disability and is a risk factor for dementia. Molecular evidence on the cellular origins of hearing loss in humans is growing. Here, we performed a genome-wide association meta-analysis of clinically diagnosed and self reported hearing impairment on 723,266 individuals and identified 48 significant loci, 10 of which are novel. A large proportion of associations comprised missense variants, half of which lie within known familial hearing loss loci. We used single-cell RNA-sequencing data from mouse cochlea and brain and mapped common-variant genomic results to spindle, root, and basal cells from the stria vascularis, a structure in the cochlea necessary for normal hearing. Our findings indicate the importance of the stria vascularis in the mechanism of hearing impairment, providing future paths for developing targets for therapeutic intervention in hearing loss.Peer reviewe

    Perspectives on the Use of Multiple Sclerosis Risk Genes for Prediction

    Get PDF
    Objective: A recent collaborative genome-wide association study replicated a large number of susceptibility loci and identified novel loci. This increase in known multiple sclerosis (MS) risk genes raises questions about clinical applicability of genotyping. In an empirical set we assessed the predictive power of typing multiple genes. Next, in a modelling study we explored current and potential predictive performance of genetic MS risk models. Materials and Methods: Genotype data on 6 MS risk genes in 591 MS patients and 600 controls were used to investigate the predictive value of combining risk alleles. Next, the replicated and novel MS risk loci from the recent and largest international genome-wide association study were used to construct genetic risk models simulating a population of 100,000 individuals. Finally, we assessed the required numbers, frequencies, and ORs of risk SNPs for higher discriminative accuracy in the future. Results: Individuals with 10 to 12 risk alleles had a significantly increased risk compared to individuals with the average population risk for developing MS (OR 2.76 (95% CI 2.02-3.77)). In the simulation study we showed that the area under the receiver operating characteristic curve (AUC) for a risk score based on the 6 SNPs was 0.64. The AUC increases to 0.66 using the well replicated 24 SNPs and to 0.69 when including all replicated and novel SNPs (n = 53) in the risk model. An additional 20 SNPs with allele frequency 0.30 and ORs 1.1 would be needed to increase the AUC to a slightly higher level of 0.70, and at least 50 novel variants with allele frequency 0.30 and ORs 1.4 would be needed to obtain an AUC of 0.85. Conclusion: Although new MS risk SNPs emerge rapidly, the discriminatory ability in a clinical setting will be limited

    Probody therapeutic design of 89Zr-CX-072 promotes accumulation in PD-L1 expressing tumors compared to normal murine lymphoid tissue

    Get PDF
    PURPOSE: Probody therapeutic CX-072 is a protease-activatable antibody that is cross-reactive with murine and human programmed death-ligand 1 (PD-L1). CX-072 can be activated in vivo by proteases present in the tumor microenvironment, thereby potentially reducing peripheral, anti-PD-L1-mediated toxicities. To study its targeting of PD-L1-expressing tissues, we radiolabeled CX-072 with the PET isotope zirconium-89 (89Zr). EXPERIMENTAL DESIGN: 89Zr-labeled CX-072, nonspecific Probody control molecule (PbCtrl) and CX-072 parental antibody (CX-075) were injected in BALB/c nude mice bearing human MDA-MB-231 tumors or C57BL/6J mice bearing syngeneic MC38 tumors. Mice underwent serial PET imaging 1, 3, and 6 days after intravenous injection (pi), followed by ex vivo biodistribution. Intratumoral 89Zr-CX-072 distribution was studied by autoradiography on tumor tissue sections, which were subsequently stained for PD-L1 by IHC. Activated CX-072 species in tissue lysates were detected by Western capillary electrophoresis. RESULTS: PET imaging revealed 89Zr-CX-072 accumulation in MDA-MB-231 tumors with 2.1-fold higher tumor-to-blood ratios at 6 days pi compared with 89Zr-PbCtrl. Tumor tissue autoradiography showed high 89Zr-CX-072 uptake in high PD-L1-expressing regions. Activated CX-072 species were detected in these tumors, with 5.3-fold lower levels found in the spleen. Furthermore, 89Zr-CX-072 uptake by lymphoid tissues of immune-competent mice bearing MC38 tumors was low compared with 89Zr-CX-075, which lacks the Probody design. CONCLUSIONS: 89Zr-CX-072 accumulates specifically in PD-L1-expressing tumors with limited uptake in murine peripheral lymphoid tissues. Our data may enable clinical evaluation of 89Zr-CX-072 whole-body distribution as a tool to support CX-072 drug development (NCT03013491)

    Association between an AMH promoter polymorphism and serum AMH levels in PCOS patients

    Get PDF
    STUDY QUESTION: Do polymorphisms in the anti-Müllerian hormone (AMH) promoter have an effect on AMH levels in patients with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER: We have identified a novel AMH promoter polymorphism rs10406324 that is associated with lower serum AMH levels and is suggested to play a role in the mechanism of regulation of AMH gene expression in women. WHAT IS KNOWN ALREADY: Follicle number is positively correlated with serum AMH levels, reflected by elevated AMH levels in women with PCOS. In addition, it is suggested that AMH production per follicle is higher in women with PCOS than in normo-ovulatory women, implying an altered regulation of AMH in PCOS. STUDY DESIGN, SIZE, DURATION: A discovery cohort of 655 PCOS women of Northern European ancestry and both an internal and external validation PCOS cohort (n = 458 and n = 321, respectively) were included in this study. Summary-level data of an AMH genome-wide association study meta-analysis including 7049 normo-ovulatory women was included as a control cohort. A genetic approach was taken through association analysis and in silico analysis of the associated variants in the AMH promoter. In vitro analysis was performed to investigate the functional mechanisms. PARTICIPANTS/MATERIALS, SETTING, METHODS: All common two-allelic single-nucleotide polymorphisms (SNPs) in the region Chr19:2 245 353–2 250 827 bp (Build 37) were selected for the analysis. Linear regression analyses were performed to determine the association between SNPs in the AMH promoter region and serum AMH levels. For the in silico analysis, the webtools ‘HaploReg’ v4.1 for ENCODE prediction weight matrices and ‘atSNP’ were used. In vitro analysis was performed using KK1 cells, a mouse granulosa cell line and COV434 cells, a human granulosa tumor cell line. Cells were transfected with the reference or the variant human AMH promoter reporter construct together with several transcription factors (TFs). Dual-Glo(®) Luciferase Assay was performed to measure the luciferase activity. MAIN RESULTS AND THE ROLE OF CHANCE: Polymorphism rs10406324 was significantly associated with serum AMH levels in all three PCOS cohorts. Carriers of the minor allele G had significantly lower log-transformed serum AMH levels compared to non-carriers (P = 8.58 × 10(−8), P = 1.35 × 10(−3) and P = 1.24 × 10(−3), respectively). This result was validated in a subsequent meta-analysis (P = 3.24 × 10(−12)). Interestingly, rs10406324 was not associated with follicle count, nor with other clinical traits. Also, in normo-ovulatory women, the minor allele of this variant was associated with lower serum AMH levels (P = 1.04 × 10(−5)). These findings suggest that polymorphism rs10406324 plays a role in the regulation of AMH expression, irrespective of clinical background. In silico analysis suggested a decreased binding affinity of the TFs steroidogenenic factor 1, estrogen-related receptor alpha and glucocorticoid receptor to the minor allele G variant, however in vitro analysis did not show a difference in promoter activity between the A and G allele. LIMITATIONS, REASONS FOR CAUTION: Functional analyses were performed in a mouse and a human granulosa cell line using an AMH promoter reporter construct. This may have limited assessment of the impact of the polymorphism on higher order chromatin structures. Human granulosa cells generated from induced pluripotent stem cells, combined with gene editing, may provide a method to elucidate the exact mechanism behind the decrease in serum AMH levels in carriers of the −210 G allele. We acknowledge that the lack of follicle number in the external validation and the control cohort is a limitation of the paper. Although we observed that the association between rs10406324 and AMH levels was independent of follicle number in our discovery and internal validation PCOS cohorts, we cannot fully rule out that the observed effects on serum AMH levels are, in part, caused by differences in follicle number. WIDER IMPLICATIONS OF THE FINDINGS: These results suggest that variations in serum AMH levels are not only caused by differences in follicle number but also by genetic factors. Therefore, the genetic context should be taken into consideration when assessing serum AMH levels in women. This may have clinical consequences when serum AMH levels are used as a marker for the polycystic ovarian morphology phenotype. STUDY FUNDING/COMPETING INTEREST(S): No external funding was used. J.S.E.L. has received consultancy fees from the following companies: Ferring, Roche Diagnostics and Ansh Labs and has received travel reimbursement from Ferring. J.A.V. has received royalties from AMH assays, paid to the institute/lab with no personal financial gain. The other authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A
    • …
    corecore