2,123 research outputs found

    Explosive Ballooning Flux Tubes in Tokamaks

    Full text link
    Tokamak stability to, potentially explosive, `ballooning' displacements of elliptical magnetic flux tubes is examined in large aspect ratio equilibrium. Above a critical pressure gradient the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure gradient, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from displaced flux tubes may result in rapid loss of confinement.Comment: 4 pages, 6 figure

    Interfacial layering in a three-component polymer system

    Full text link
    We study theoretically the temporal evolution and the spatial structure of the interface between two polymer melts involving three different species (A, A* and B). The first melt is composed of two different polymer species A and A* which are fairly indifferent to one another (Flory parameter chi_AA* ~ 0). The second melt is made of a pure polymer B which is strongly attracted to species A (chi_AB 0). We then show that, due to these contradictory tendencies, interesting properties arise during the evolution of the interface after the melts are put into contact: as diffusion proceeds, the interface structures into several adjacent "compartments", or layers, of differing chemical compositions, and in addition, the central mixing layer grows in a very asymmetric fashion. Such unusual behaviour might lead to interesting mechanical properties, and demonstrates on a specific case the potential richness of multi-component polymer interfaces (as compared to conventional two-component interfaces) for various applications.Comment: Revised version, to appear in Macromolecule

    Dynamics of Strongly Deformed Polymers in Solution

    Full text link
    Bead spring models for polymers in solution are nonlinear if either the finite extensibility of the polymer, excluded volume effects or hydrodynamic interactions between polymer segments are taken into account. For such models we use a powerful method for the determination of the complete relaxation spectrum of fluctuations at {\it steady state}. In general, the spectrum and modes differ significantly from those of the linear Rouse model. For a tethered polymer in uniform flow the differences are mainly caused by an inhomogeneous distribution of tension along the chain and are most pronounced due to the finite chain extensibility. Beyond the dynamics of steady state fluctuations we also investigate the nonlinear response of the polymer to a {\em large sudden change} in the flow. This response exhibits several distinct regimes with characteristic decay laws and shows features which are beyond the scope of single mode theories such as the dumbbell model.Comment: 7 pages, 3 figure

    Hydrodynamic Self-Consistent Field Theory for Inhomogeneous Polymer Melts

    Full text link
    We introduce a mesoscale technique for simulating the structure and rheology of block copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self consistent field theory (DSCFT) with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a sub-micron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow, and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.Comment: Revised as per peer revie

    Stripes of Partially Fluorinated Alkyl Chains: Dipolar Langmuir Monolayers

    Full text link
    Stripe-like domains of Langmuir monolayers formed by surfactants with partially fluorinated lipid anchors (F-alkyl lipids) are observed at the gas-liquid phase coexistence. The average periodicity of the stripes, measured by fluorescence microscopy, is in the micrometer range, varying between 2 and 8 microns. The observed stripe-like patterns are stabilized due to dipole-dipole interactions between terminal -CF3 groups. These interactions are particularly strong as compared with non-fluorinated lipids due to the low dielectric constant of the surrounding media (air). These long-range dipolar interactions tend to elongate the domains, in contrast to the line tension that tends to minimize the length of the domain boundary. This behavior should be compared with that of the lipid monolayer having alkyl chains, and which form spherical micro-domains (bubbles) at the gas-liquid coexistence. The measured stripe periodicity agrees quantitatively with a theoretical model. Moreover, the reduction in line tension by adding traces (0.1 mol fraction) of cholesterol results, as expected, in a decrease in the domain periodicity.Comment: 20 pages, 4 fig

    Helium condensation in aerogel: avalanches and disorder-induced phase transition

    Full text link
    We present a detailed numerical study of the elementary condensation events (avalanches) associated to the adsorption of 4^4He in silica aerogels. We use a coarse-grained lattice-gas description and determine the nonequilibrium behavior of the adsorbed gas within a local mean-field analysis, neglecting thermal fluctuations and activated processes. We investigate the statistical properties of the avalanches, such as their number, size and shape along the adsorption isotherms as a function of gel porosity, temperature, and chemical potential. Our calculations predict the existence of a line of critical points in the temperature-porosity diagram where the avalanche size distribution displays a power-law behavior and the adsorption isotherms have a universal scaling form. The estimated critical exponents seem compatible with those of the field-driven Random Field Ising Model at zero temperature.Comment: 16 pages, 14 figure

    Nanoscale surface relaxation of a membrane stack

    Full text link
    Recent measurements of the short-wavelength (~ 1--100 nm) fluctuations in stacks of lipid membranes have revealed two distinct relaxations: a fast one (decay rate of ~ 0.1 ns^{-1}), which fits the known baroclinic mode of bulk lamellar phases, and a slower one (~ 1--10 \mu s^{-1}) of unknown origin. We show that the latter is accounted for by an overdamped capillary mode, depending on the surface tension of the stack and its anisotropic viscosity. We thereby demonstrate how the dynamic surface tension of membrane stacks could be extracted from such measurements.Comment: 4 page

    On the size and shape of excluded volume polymers confined between parallel plates

    Full text link
    A number of recent experiments have provided detailed observations of the configurations of long DNA strands under nano-to-micrometer sized confinement. We therefore revisit the problem of an excluded volume polymer chain confined between two parallel plates with varying plate separation. We show that the non-monotonic behavior of the overall size of the chain as a function of plate-separation, seen in computer simulations and reproduced by earlier theories, can already be predicted on the basis of scaling arguments. However, the behavior of the size in a plane parallel to the plates, a quantity observed in recent experiments, is predicted to be monotonic, in contrast to the experimental findings. We analyze this problem in depth with a mean-field approach that maps the confined polymer onto an anisotropic Gaussian chain, which allows the size of the polymer to be determined separately in the confined and unconfined directions. The theory allows the analytical construction of a smooth cross-over between the small plate-separation de Gennes regime and the large plate-separation Flory regime. The results show good agreement with Langevin dynamics simulations, and confirm the scaling predictions.Comment: 15 pages, 3 figure

    Theoretical study of dislocation nucleation from simple surface defects in semiconductors

    Full text link
    Large-scale atomistic calculations, using empirical potentials for modeling semiconductors, have been performed on a stressed system with linear surface defects like steps. Although the elastic limits of systems with surface defects remain close to the theoretical strength, the results show that these defects weaken the atomic structure, initializing plastic deformations, in particular dislocations. The character of the dislocation nucleated can be predicted considering both the resolved shear stress related to the applied stress orientation and the Peierls stress. At low temperature, only glide events in the shuffle set planes are observed. Then they progressively disappear and are replaced by amorphization/melting zones at a temperature higher than 900 K

    Viscoelastic Effect on Hydrodynamic Relaxation in Polymer Solutions

    Full text link
    The viscoelastic effect on the hydrodynamic relaxation in semidilute polymer solutions is investigated. From the linearized two-fluid model equations, we predict that the dynamical asymmetry coupling between the velocity fluctuations and the viscoelastic stress influences on the hydrodynamic relaxation process, resulting in a wave-number-dependent shear viscosity.Comment: 7pages; To be published in Journal of the Physical Society of Japan,Vol 72,No2,(2003
    • …
    corecore