4 research outputs found

    Additional file 3: Table S1. of Amnion as a surrogate tissue reporter of the effects of maternal preeclampsia on the fetus

    No full text
    Lists of p values of principal component analysis with known covariates. Table S2. A list of differentially expressed genes. Table S3. Lists of differentially methylated HpaII sites in each model. Table S4. A list of differentially methylated HpaII sites with previously reported Infinium HumanMethylation450 BeadChip differentially methylated probes. Table S5. A list of variably methylated HpaIIs. Table S6. A list of var-HpaII sites harboring genes. (XLSX 374 kb

    Additional file 6: Figure S4. of Amnion as a surrogate tissue reporter of the effects of maternal preeclampsia on the fetus

    No full text
    Comparison of the DNA methylation distribution of variable HpaII sites. The distributions of the DNA methylation levels of variable methylation sites in severe PE-exposed (PE_S, green) (proteinuria grade ≥3 and systolic blood pressure ≥160 mmHg), less severe PE-exposed (PE_M, orange) (proteinuria grade ≤1 and systolic blood pressure ≥ 140 mmHg) and control (blue) were summarized graphically in violin plots. (PDF 895 kb

    Additional file 2: Figure S1. of Amnion as a surrogate tissue reporter of the effects of maternal preeclampsia on the fetus

    No full text
    Cell type-specific DNA methylation. A) Bisulfite sequencing results of Hpa_1553647. Each row represents the sequence result from bisulfite PCR products. We show four amnion, four amniotic epithelial cell, and amniotic stromal cell results. The amniotic epithelial and stromal cells were isolated from four individuals. The blue arrow indicates the Hpa_1553647 position in the sequencing results. B) Bisulfite MassArray results of Hpa_210409 and Hpa_621984. The y-axis shows the % DNA methylation in amniotic epithelial and amniotic stromal cells (from four individuals). The p values were calculated by a t test. The error bars indicate the standard deviations. (PDF 317 kb
    corecore