3 research outputs found

    Caracterización morfológica y molecular de accesiones de maíz negro (Zea mays L.) mediante análisis de secuencias simples

    Get PDF
    Molecular and morphological characterization of maize lines from a breeding program has an important application in the analysis of genetic diversity in order to generate hybrids lines. In the present study, 10 microsatellites (SSR) and 4 morphological traits were used to estimate the genetic relationship among 24 inbred lines of purple maize (Zea mays L.) from Ecuador and CIMMYT. Genetic distance was estimated using the Simple Matching coefficient. As a result, the 24 accessions were grouped in 5 clusters for the morphological traits and in 7 clusters for the molecular analysis using the UPGMA clustering.La caracterización molecular y morfológica de accesiones de maíz dentro de un programa de mejoramiento vegetal es de importante aplicación en la estimación de relaciones genéticas para la generación de híbridos. En este trabajo se emplearon 10 microsatélites y 4 características morfológicas para analizar y estimar el grado de relación genética entre 24 accesiones endocriadas de maíz morado (Zea mays L.) procedentes del Ecuador y del CIMMYT

    Bioengineering secreted proteases converts divergent Rcr3 orthologs and paralogs into extracellular immune co-receptors

    Get PDF
    Secreted immune proteases “Required for Cladosporium resistance-3” (Rcr3) and “Phytophthora-inhibited protease-1” (Pip1) of tomato (Solanum lycopersicum) are both inhibited by Avirulence-2 (Avr2) from the fungal plant pathogen Cladosporium fulvum. However, only Rcr3 acts as a decoy co-receptor that detects Avr2 in the presence of the Cf-2 immune receptor. Here, we identified crucial residues in tomato Rcr3 that are required for Cf-2-mediated signaling and bioengineered various proteases to trigger Avr2/Cf-2-dependent immunity. Despite substantial divergence in Rcr3 orthologs from eggplant (Solanum melongena) and tobacco (Nicotiana spp.), minimal alterations were sufficient to trigger Avr2/Cf-2-mediated immune signaling. By contrast, tomato Pip1 was bioengineered with 16 Rcr3-specific residues to initiate Avr2/Cf-2-triggered immune signaling. These residues cluster on one side of the protein next to the substrate-binding groove, indicating a potential Cf-2 interaction site. Our findings also revealed that Rcr3 and Pip1 have distinct substrate preferences determined by two variant residues and that both are suboptimal for binding Avr2. This study advances our understanding of Avr2 perception and opens avenues to bioengineer proteases to broaden pathogen recognition in other crops
    corecore