45 research outputs found

    Estrogen Receptor Alpha Expression in Ovarian Cancer Predicts Longer Overall Survival

    Get PDF
    Estrogen as a potential factor of ovarian carcinogenesis, acts via two nuclear receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), but the cellular signal pathways involved are not completely clear so far. In this study we have described the expression of ERα, detected by immunocytochemistry in 11 ovarian carcinoma cell lines and by immunohistochemistry in 43 Federation Internationale des Gyneacologistes et Obstetristes stage III ovarian carcinoma specimens prepared before and after treatment with cisplatin-based schemes. For cisplatin resistance is a major obstacle in the treatment of ovarian carcinoma, analysis of cisplatin sensitivity in 11 ovarian carcinoma cell line was also performed. The strong nuclear ERα expression was only shown in the single A2780P cell line. Expression of ERα in tissue specimens did not reveal any correlations between histopathological parameters (histologic type and grading). We demonstrated a significant association with ERα expression in specimens from primary laparotomies (PL) and cause–specific survival. In the cases terminated by death of the patient, overall immunoreactivity score of ERα expression at PL was significantly lower than in surviving patients. In addition, Kaplan-Meier analysis revealed significantly shorter overall survival time and progression-free time in cases with lower immunoreactivity score of ERα expression at PL. Our findings support the hypothesis that aberrant hormone activity, by way of altered receptor expression, might be an important factor in the malignant transformation of ovarian cancer

    Expression of oestrogen receptor beta (ERβ1) protein in human breast cancer biopsies

    Get PDF
    Oestrogen action is mediated via specific receptors that act as ligand-activated transcription factors. A monoclonal antibody specific to the C-terminus of human oestrogen receptor beta has been characterized and the prevalence of expression of oestrogen receptor beta protein investigated in a well defined set of breast cancers. Reverse transcription-polymerase chain reaction analysis of RNA from tissue biopsies detected oestrogen receptor beta in all samples examined. The anti-oestrogen receptor beta antibody cross reacted specifically with both long (∼59 Kd) and short (∼53 Kd) forms of recombinant oestrogen receptor beta. Western blot analysis of breast tumours contained both forms of oestrogen receptor beta protein although in some samples lower molecular weight species (32–45 Kd) were identified. Fifty-one breast cancer biopsies were examined using immunohistochemistry; 41 (80%) were immunopositive for oestrogen receptor alpha, 48 (94%) were immunopositive for oestrogen receptor beta and 38 (74.5%) co-expressed both receptors. Expression of oestrogen receptor beta was exclusively nuclear and occurred in multiple cell types. There was no quantitative relationship between staining for the two ERs although in tumours in which both receptors were present immunoexpression of oestrogen receptor alpha was invariably more intense. The significance of oestrogen receptor beta protein expression in breast cancers to therapy remains to be determined but the availability of a well characterized antibody capable of detecting oestrogen receptor beta in archive material will facilitate the process

    Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis

    Get PDF
    Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis

    Estrogen Signaling in the Adrenal Cortex

    No full text

    Estrogen Receptor Alpha Inhibits the Estrogen-Mediated Suppression of HIV Transcription in Astrocytes: Implications for Estrogen Neuroprotection in HIV Dementia

    No full text
    Many human immunodeficiency virus (HIV) proteins including Tat are produced by HIV-infected astrocytes and secreted into the brain resulting in extensive neuronal damage that contributes to the pathogenesis of HIV dementia. The neuroprotective hormone 17β-estradiol (E2) is known to negatively regulate the HIV transcriptional promoter in human fetal astrocytes (SVGA cell line) in a Tat-dependent manner. In the present study we extended our investigation in HIV-infected SVGA cells and found a reduction in HIV p24 levels following E2 treatment in comparison to control. Although many E2-mediated events occur through estrogen receptor alpha (ERα), we found low levels of ERα mRNA and failed to detect ERα protein in SVGA cells. Paradoxically, when ERα was overexpressed the E2-mediated decrease in Tat transactivation of the promotor was prevented. To determine whether ERα expression is altered in the human brain following HIV infection, postmortum hippocampal tissue was obtained from cognitively normal HIV− and HIV+ patients, patients diagnosed with either mild cognitive/motor disorder (MCMD) or HIV-associated dementia (HAD). Immunohistochemistry and quantitative real-time PCR (qRT-PCR) for ERα and glial fibrillary acidic protein (GFAP) showed that ERα mRNA levels were not significantly different between groups, while GFAP increased in the hippocampus in the HIV+ compared to the HIV− group and was decreased in the MCMD and HAD subgroups compared to HIV+ controls. Notably the ratio of ERα-positive reactive astrocytes to total reactive astrocytes increased and significantly correlated with the severity of cognitive impairment following HIV infection. The data suggest that E2 would have the most dramatic effect in reducing HIV transcription early in the disease process when the subpopulation of astrocytes expressing ERα is low

    New approaches for estimating risk from exposure to diethylstilbestrol.

    No full text
    A subgroup from a National Institute of Environmental Health Sciences, workshop concerned with characterizing the effects of endocrine disruptors on human health at environmental exposure levels considered the question, If diethylstilbestrol (DES) were introduced into the market for human use today and likely to result in low-dose exposure of the human fetus, what would be required to assess risk? On the basis of an analysis of the quality of data on human DES exposure, the critical times and doses for inducing genital tract malformations and cancer must be determined. This would be facilitated through analysis of the ontogeny of estrogen receptor expression in the developing human genital tract. Models of low-dose estrogenic effects will have to be developed for human and rodent genital tract development. Mouse models offer many advantages over other potential animal models because of the wealth of the earlier literature, the availability of sensitive end points, the availability of mutant lines, and the possibility of generating genetically engineered model systems. Through multidisciplinary approaches, it should be possible to elucidate the cellular and molecular mechanisms of endocrine disruption elicited by estrogens during development and facilitate an assessment of risk to humans
    corecore