10 research outputs found

    GPR40 partial agonist MK-2305 lower fasting glucose in the Goto Kakizaki rat via suppression of endogenous glucose production

    No full text
    <div><p>GPR40 (FFA1) is a fatty acid receptor whose activation results in potent glucose lowering and insulinotropic effects <i>in vivo</i>. Several reports illustrate that GPR40 agonists exert glucose lowering in diabetic humans. To assess the mechanisms by which GPR40 partial agonists improve glucose homeostasis, we evaluated the effects of MK-2305, a potent and selective partial GPR40 agonist, in diabetic Goto Kakizaki rats. MK-2305 decreased fasting glucose after acute and chronic treatment. MK-2305-mediated changes in glucose were coupled with increases in plasma insulin during hyperglycemia and glucose challenges but not during fasting, when glucose was normalized. To determine the mechanism(s) mediating these changes in glucose metabolism, we measured the absolute contribution of precursors to glucose production in the presence or absence of MK-2305. MK-2305 treatment resulted in decreased endogenous glucose production (EGP) driven primarily through changes in gluconeogenesis from substrates entering at the TCA cycle. The decrease in EGP was not likely due to a direct effect on the liver, as isolated perfused liver studies showed no effect of MK-2305 <i>ex vivo</i> and GPR40 is not expressed in the liver. Taken together, our results suggest MK-2305 treatment increases glucose stimulated insulin secretion (GSIS), resulting in changes to hepatic substrate handling that improve glucose homeostasis in the diabetic state. Importantly, these data extend our understanding of the underlying mechanisms by which GPR40 partial agonists reduce hyperglycemia.</p></div

    Effects of chronic treatment with MK-2305 in the GK rat.

    No full text
    <p>(A) Morning blood glucose levels in GK rats treated with vehicle, 10, or 30 mg/kg of MK-2305, or 10 mg/kg rosiglitazone for 20 days in feed. (B) Fasted blood glucose levels on days 7 and 14 of the study were significantly reduced with MK-2305 and rosiglitazone treatment compared to vehicle controls. (C) Fasted plasma insulin levels on days 7 and 14. (D) Effects on food intake and (E) body weight during the chronic study. (F) Plasma insulin levels during a OGTT in chronically treated rats on day 13. Changes in blood glucose, food intake or body weight over time with MK-2305 or rosiglitazone vs. vehicle were analyzed by two-way ANOVA with repeated measures followed by Tukeys post hoc analysis. Changes in fasted glucose or insulin of glucose AUC were analyzed by one way ANOVA comparing MK-2305 or rosiglitazone treatments with vehicle followed by Dunnetts post hoc analysis. *p<0.05, **p<0.01.</p

    In vitro and ex-vivo pharmacology of MK-2305.

    No full text
    <p>(A) Structure of the synthetic GPR40 partial agonist MK-2305. (B) Dose-response curves for MK-2305 were generated monitoring IP accumulation in CHO cells expressing rat GPR40. Data are expressed as a percentage of the control response of an in-house partial agonist, and fitted to a standard 4-parameter non-linear regression model. EC<sub>50</sub>’s were determined for each test compound using a custom in-house developed software package. Each experiment was multiple times with a representative graph shown. The mean parameters of these and other individual experiments are shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0176182#pone.0176182.t001" target="_blank">Table 1</a>. (C) Effect of MK-2305 on GSIS in isolated GPR40 WT and KO islets under high (15 mM) and not basal (2 mM) glucose. Data provided are means +/- SEM. Data were analyzed via ANOVA followed by Bonferroni multiple comparisons test. **p<0.01compared to DMSO treated islets under 15 mM glucose.</p

    Effects of MK-2305 on glucose metabolism in perfused mouse livers.

    No full text
    <p>Effect of 10 ÎĽM MK-2305 or DMSO on the conversion of [2-<sup>13</sup>C] pyruvate to <sup>13</sup>C-glucose, <sup>13</sup>C-glycogen, and <sup>13</sup>C-lactate in perfused db/db mouse livers. MK-2305 treatments were compared to vehicle for each endpoint via students ttest.</p

    Structure–Activity Relationship of Novel and Selective Biaryl-Chroman GPR40 AgoPAMs

    No full text
    A series of biaryl chromans exhibiting potent and selective agonism for the GPR40 receptor with positive allosteric modulation of endogenous ligands (AgoPAM) were discovered as potential therapeutics for the treatment of type II diabetes. Optimization of physicochemical properties through modification of the pendant aryl rings resulted in the identification of compound <i>AP5</i>, which possesses an improved metabolic profile while demonstrating sustained glucose lowering

    Design, Synthesis, and Evaluation of Novel and Selective G‑protein Coupled Receptor 120 (GPR120) Spirocyclic Agonists

    No full text
    Type 2 diabetes mellitus (T2DM) is an ever increasing worldwide epidemic, and the identification of safe and effective insulin sensitizers, absent of weight gain, has been a long-standing goal of diabetes research. G-protein coupled receptor 120 (GPR120) has recently emerged as a potential therapeutic target for treating T2DM. Natural occurring, and more recently, synthetic agonists have been associated with insulin sensitizing, anti-inflammatory, and fat metabolism effects. Herein we describe the design, synthesis, and evaluation of a novel spirocyclic GPR120 agonist series, which culminated in the discovery of potent and selective agonist <b>14</b>. Furthermore, compound <b>14</b> was evaluated <i>in vivo</i> and demonstrated acute glucose lowering in an oral glucose tolerance test (oGTT), as well as improvements in homeostatic measurement assessment of insulin resistance (HOMA-IR; a surrogate marker for insulin sensitization) and an increase in glucose infusion rate (GIR) during a hyperinsulinemic euglycemic clamp in diet-induced obese (DIO) mice
    corecore