631 research outputs found

    Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease

    Get PDF
    Traditionally, Crohn's disease has been associated with a Th1 cytokine profile, while Th2 cytokines are modulators of ulcerative colitis. This concept has been challenged by the description of tolerising regulatory T cells (Treg) and by proinflammatory Th17 cells, a novel T cell population characterised by the master transcription factor ROR\textgreekgt, the surface markers IL23R and CCR6, and by production of the proinflammatory cytokines IL17A, IL17F, IL21, IL22 and IL26, and the chemokine CCL20. Th17 cells differentiate under the influence of IL1\textgreekb, IL6, IL21 and IL23. Recent studies indicate that TGF\textgreekb is essential not only for the development of murine Th17 cells but also for differentiation of human Th17 cells. TGF\textgreekb reciprocally regulates the differentiation of inflammatory Th17 cells and suppressive Treg subsets, with the concomitant presence of proinflammatory cytokines favouring Th17 cell differentiation. Several studies demonstrated an important role of Th17 cells in intestinal inflammation, particularly in Crohn's disease. Genome-wide association studies indicate that IL23R and five additional genes involved in Th17 differentiation (IL12B, JAK2, STAT3, CCR6 and TNFSF15) are associated with susceptibility to Crohn's disease and partly also to ulcerative colitis. Taken together, both Th1 and Th17 cells are important mediators of inflammation in Crohn's disease, although activities previously ascribed to IL12 may be mediated by IL23. Anti-IL12/IL23p40 antibody therapy, which targets both Th1 and Th17 cells, is effective in Crohn's disease. However, the complex relationship between Th1 and Th17 cells has not been completely analysed. This will be of great importance to delineate the specific contributions of these cells to Crohn's disease and other autoimmune diseases

    Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease

    Get PDF
    Background/aim: Interleukin 31 (IL31), primarily expressed in activated lymphocytes, signals through a heterodimeric receptor complex consisting of the IL31 receptor alpha (IL31R\textgreeka) and the oncostatin M receptor (OSMR). The aim of this study was to analyse IL31 receptor expression, signal transduction, and specific biological functions of this cytokine system in intestinal inflammation.Methods: Expression studies were performed by RT-PCR, quantitative PCR, western blotting, and immunohistochemistry. Signal transduction was analysed by western blotting. Cell proliferation was measured by MTS assays, cell migration by restitution assays.Results: Colorectal cancer derived intestinal epithelial cell (IEC) lines express both IL31 receptor subunits, while their expression in unstimulated primary murine IEC was low. LPS and the proinflammatory cytokines TNF-\textgreeka, IL1\textgreekb, IFN-\textgreekg, and sodium butyrate stimulation increased IL31, IL31R\textgreeka, and OSMR mRNA expression, while IL31 itself enhanced IL8 expression in IEC. IL31 mediates ERK-1/2, Akt, STAT1, and STAT3 activation in IEC resulting in enhanced IEC migration. However, at low cell density, IL31 had significant antiproliferative capacities (p<0.005). IL31 mRNA expression was not increased in the TNF\textgreekDARE mouse model of ileitis but in inflamed colonic lesions compared to non-inflamed tissue in patients with Crohn's disease (CD; average 2.4-fold increase) and in patients with ulcerative colitis (UC; average 2.6-fold increase) and correlated with the IL-8 expression in these lesions (r = 0.564 for CD; r = 0.650 for UC; total number of biopsies analysed: n = 88).Conclusion: IEC express the functional IL31 receptor complex. IL31 modulates cell proliferation and migration suggesting a role in the regulation of intestinal barrier function particularly in intestinal inflammation

    Identification of IL-27 as a novel regulator of major histocompatibility complex class I and class II expression, antigen presentation, and processing in intestinal epithelial cells

    Get PDF
    Antigen presentation via major histocompatibility complex (MHC) class I and class II receptors plays a fundamental role in T cell-mediated adaptive immunity. A dysregulation of this fine-tuned recognition might result in the development of autoimmune diseases such as inflammatory bowel diseases that are characterized by chronic relapsing inflammation of the intestinal tract and a damaged intestinal epithelial barrier. While MHCII receptors are usually expressed by professional antigen presenting cells (APC) only, there is increasing evidence that non-immune cells such as intestinal epithelial cells (IEC) might express MHCII upon stimulation with IFN-γ and thus act as non-professional APC. However, little is known about other factors regulating intestinal epithelial MHC expression. Here, we identify IL-27 as an inducer of different MHCI and MHCII receptor subtypes and the invariant chain (CD74/li) in IEC via the STAT1/IRF1/CIITA axis. CIITA, MHCII, and CD74 expression was significantly increased in IEC from Crohn’s disease (CD) patients with active disease compared to controls or CD patients in remission. IEC phagocytosed and digested external antigens and apoptotic cells. IL-27 strongly stimulated antigen processing via the immunoproteasome in a IRF1-dependent manner. In co-culture experiments, antigen-primed IEC strongly enhanced lymphocyte proliferation and IL-2 secretion, dependent on direct cell-cell contact. IL-27 pretreatment of IEC significantly increased CD4+ T cell proliferation and reduced IL-2 levels in lymphocytes in coculture. In summary, we identified IL-27 as a novel regulator of IEC antigen processing and presentation via MHCI and MHCII receptors, underscoring the importance of IEC as non-professional APC

    Municipal Bankruptcy as a Result of Municipal Financial Distress?

    Full text link

    The role of the novel Th17 cytokine IL-26 in intestinal inflammation

    Get PDF
    Background and aims: Interleukin 26 (IL-26), a novel IL-10-like cytokine without a murine homologue, is expressed in T helper 1 (Th1) and Th17 cells. Currently, its function in human disease is completely unknown. The aim of this study was to analyse its role in intestinal inflammation.Methods: Expression studies were performed by reverse transcription-PCR (RT-PCR), quantitative PCR, western blot and immunohistochemistry. Signal transduction was analysed by western blot experiments and ELISA. Cell proliferation was measured by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. IL-26 serum levels were determined by an immunoluminometric assay (ILMA).Results: All examined intestinal epithelial cell (IEC) lines express both IL-26 receptor subunits IL-20R1 and IL-10R2. IL-26 activates extracellular signal-related kinase (ERK)-1/2 and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) mitogen-activated protein (MAP) kinases, Akt and signal transducers and activators of transcription (STAT) 1/3. IL-26 stimulation increases the mRNA expression of proinflammatory cytokines but decreases cell proliferation. In inflamed colonic lesions of patients with Crohn's disease, an elevated IL-26 mRNA expression was found that correlated highly with the IL-8 and IL-22 expression. Immunohistochemical analysis demonstrated IL-26 protein expression in colonic T cells including Th17 cells expressing the orphan nuclear receptor ROR\textgreekgt, with an increased number of colonic IL-26-expressing cells in active Crohn's disease.Conclusion: Intestinal cells express the functional IL-26 receptor complex. IL-26 modulates IEC proliferation and proinflammatory gene expression and its expression is upregulated in active Crohn's disease, indicating a role for this cytokine system in the innate host cell response during intestinal inflammation. For the first time, IL-26 expression is demonstrated in colonic ROR\textgreekgt-expressing Th17 cells in situ, supporting a role for this cell type in the pathogenesis of Crohn's disease

    A fiber-based beam profiler for high-power laser beams in confined spaces and ultra-high vacuum

    Get PDF
    Laser beam profilometry is an important scientific task with well-established solutions for beams propagating in air. It has, however, remained an open challenge to measure beam profiles of high-power lasers in ultra-high vacuum and in tightly confined spaces. Here we present a novel scheme that uses a single multi-mode fiber to scatter light and guide it to a detector. The method competes well with commercial systems in position resolution, can reach through apertures smaller than 500Ă—500500\times 500~ÎĽ\mum2^2 and is compatible with ultra-high vacuum conditions. The scheme is simple, compact, reliable and can withstand laser intensities beyond 2~MW/cm2^2

    Oncostatin M Mediates STAT3-Dependent Intestinal Epithelial Restitution via Increased Cell Proliferation, Decreased Apoptosis and Upregulation of SERPIN Family Members

    Get PDF
    Objective: Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-beta and gp130 (II),respectively. Aim of this study was to analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation. Methods: OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments, signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR. Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water soluble tetrazolium assays. Results: The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and OSMR-b, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated (adj.-p <= 0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories "immunity and defense'' (p=2.1x10(-7)),"apoptosis'' (p=3.7x10(-4)) and "JAK/STAT cascade'' (p=3.4x10(-6)). Members of the SERPIN gene family were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell proliferation (p < 0.05) and wound healing (p=3.9x10(-5)). OSM protein expression was increased in colonic biopsies of patients with active inflammatory bowel disease (IBD). Conclusions: OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to elucidate the exact role of OSM in intestinal inflammation and the potential of OSM as a drug target in IBD

    Rate and Predictors of Mucosal Healing in Patients with Inflammatory Bowel Disease Treated with Anti-TNF-Alpha Antibodies

    Get PDF
    Objective: Mucosal healing (MH) is an important treatment goal in patients with inflammatory bowel disease (IBD),but factors predicting MH under medical therapy are largely unknown. In this study, we aimed to characterize predictive factors for MH in anti-TNF-alpha antibody-treated IBD patients. Methods: We retrospectively analyzed 248 IBD patients (61.3% CD, 38.7% UC) treated with anti-TNF-alpha antibodies (infliximab and/or adalimumab) for MH, defined as macroscopic absence of inflammatory lesions (Mayo endoscopy score 0 or SES-CD score 0) in colonoscopies which were analyzed before and after initiation of an anti-TNF-alpha antibody treatment. Results: In patients treated with only one anti-TNF-alpha antibody ("TNF1 group",n = 202), 56 patients (27.7%) achieved complete MH at follow-up colonoscopy (median overall follow-up time: 63 months). In a second cohort (n = 46), which comprised patients who were consecutively treated with two anti-TNF-alpha antibodies ("TNF2 group"), 13 patients (28.3%) achieved complete MH (median overall follow-up time: 64.5 months). Compared to patients without MH, CRP values at follow-up colonoscopy were significantly lower in patients with MH (TNF1 group: p = 8.35x10(-5); TNF2 group: p = 0.002). Multivariate analyses confirmed CRP at follow-up colonoscopy as predictor for MH in the TNF1 group (p = 0.012). Overall need for surgery was lower in patients with MH (TNF1 group: p = 0.01; TNF2 group: p = 0.03). Conclusions: We identified low serum CRP level at follow-up colonoscopy as predictor for MH, while MH was an excellent negative predictor for the need for surgery
    • …
    corecore