270 research outputs found

    Robust unravelings for resonance fluorescence

    Get PDF
    Monitoring the fluorescent radiation of an atom unravels the master equation evolution by collapsing the atomic state into a pure state which evolves stochastically. A robust unraveling is one that gives pure states that, on average, are relatively unaffected by the master equation evolution (which applies once the monitoring ceases). The ensemble of pure states arising from the maximally robust unraveling has been suggested to be the most natural way of representing the system [H.M. Wiseman and J.A. Vaccaro, Phys. Lett. A {\bf 250}, 241 (1998)]. We find that the maximally robust unraveling of a resonantly driven atom requires an adaptive interferometric measurement proposed by Wiseman and Toombes [Phys. Rev. A {\bf 60}, 2474 (1999)]. The resultant ensemble consists of just two pure states which, in the high driving limit, are close to the eigenstates of the driving Hamiltonian Ωσx/2\Omega\sigma_{x}/2. This ensemble is the closest thing to a classical limit for a strongly driven atom. We also find that it is possible to reasonably approximate this ensemble using just homodyne detection, an example of a continuous Markovian unraveling. This has implications for other systems, for which it may be necessary in practice to consider only continuous Markovian unravelings.Comment: 12 pages including 5 .eps figures, plus one .jpg figur

    Repeatability and reproducibility of deep-learning-based liver volume and Couinaud segment volume measurement tool

    Get PDF
    Purpose Volumetric and health assessment of the liver is crucial to avoid poor post-operative outcomes following liver resection surgery. No current methods allow for concurrent and accurate measurement of both Couinaud segmental volumes for future liver remnant estimation and liver health using non-invasive imaging. In this study, we demonstrate the accuracy and precision of segmental volume measurements using new medical software, Hepatica (TM).Methods MRI scans from 48 volunteers from three previous studies were used in this analysis. Measurements obtained from Hepatica (TM) were compared with OsiriX. Time required per case with each software was also compared. The performance of technicians and experienced radiologists as well as the repeatability and reproducibility were compared using Bland-Altman plots and limits of agreement.Results High levels of agreement and lower inter-operator variability for liver volume measurements were shown between Hepatica (TM) and existing methods for liver volumetry (mean Dice score 0.947 +/- 0.010). A high consistency between technicians and experienced radiologists using the device for volumetry was shown (+/- 3.5% of total liver volume) as well as low inter-observer and intra-observer variability. Tight limits of agreement were shown between repeated Couinaud segment volume (+ 3.4% of whole liver), segmental liver fibroinflammation and segmental liver fat measurements in the same participant on the same scanner and between different scanners. An underestimation of whole-liver volume was observed between three non-reference scanners.Conclusion Hepatica (TM) produces accurate and precise whole-liver and Couinaud segment volume and liver tissue characteristic measurements. Measurements are consistent between trained technicians and experienced radiologists.[GRAPHICS].Cardiovascular Aspects of Radiolog

    The Boundary-spanning Role of Democratic Learning Communities: Implementing the IDEALS

    Get PDF
    This multi-case study investigates characteristics and practices in schools that expand the traditional boundaries of school leadership and transform schools into democratic learning communities based on the level of implementation of the IDEALS framework. This investigation serves as a modus to illuminate democratic processes that change schools and address the needs of the students, not the needs of the adults in the system. A sample of five purposefully selected high schools, from the Midwest USA, was utilized. The schools serve Grade 9—12 students, but vary in size, residential area and socioeconomic status of the students. This study illuminates some of the challenges and strategies that facilitate or impede the process of creating more democratic schools that expand the boundaries of inquiry and discourse to include a broader range of community stakeholders and that respect and embrace issues of equity.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    corecore