1,884 research outputs found
An introduction to ghost imaging: quantum and classical
Ghost imaging has been a subject of interest to the quantum optics community for the past 20 years. Initially seen as manifestation of quantum spookiness, it is now recognized as being implementable in both single- and many-photon number regimes. Beyond its scientific curiosity, it is now feeding novel imaging modalities potentially offering performance attributes that traditional approaches cannot match
Generation of Caustics and Spatial Rogue Waves from Nonlinear Instability
Caustics are natural phenomena in which nature concentrates the energy of
waves. Although, they are known mostly in optics, caustics are intrinsic to all
wave phenomena. For example, studies show that fluctuations in the profile of
an ocean floor can generate random caustics and focus the energy of tsunami
waves. Caustics share many similarities to rogue waves, as they both exhibit
heavy-tailed distribution, i.e. an overpopulation of large events. Linear
Schr\"odinger-type equations are usually used to explain the wave dynamics of
caustics. However, in that the wave amplitude increases dramatically in
caustics, nonlinearity is inevitable in many systems. In this Letter, we
investigate the effect of nonlinearity on the formation of optical caustics. We
show experimentally that, in contrast to linear systems, even small phase
fluctuations can generate strong caustics upon nonlinear propagation. We
simulated our experiment based on the nonlinear Schr\"odinger equation (NLSE)
with Kerr-type nonlinearity, which describes the wave dynamics not only in
optics, but also in some other physical systems such as oceans. Therefore, our
results may also aid our understanding of ocean phenomena.Comment: 5 pages, 4 figure
Controlling induced coherence for quantum imaging
Induced coherence in parametric down-conversion between two coherently pumped
nonlinear crystals that share a common idler mode can be used as an imaging
technique. Based on the interference between the two signal modes of the
crystals, an image can be reconstructed. By obtaining an expression for the
interference pattern that is valid in both the low- and the high-gain regimes
of parametric down-conversion, we show how the coherence of the light emitted
by the two crystals can be controlled. With our comprehensive analysis we
provide deeper insight into recent discussions about the application of induced
coherence to imaging in different regimes. Moreover, we propose a scheme for
optimizing the visibility of the interference pattern so that it directly
corresponds to the degree of coherence of the light generated in the two
crystals. We find that this scheme leads in the high-gain regime to a
visibility arbitrarily close to unity.Comment: 9 pages, 4 figure
Efficient separation of the orbital angular momentum eigenstates of light
Orbital angular momentum (OAM) of light is an attractive degree of freedom
for funda- mentals studies in quantum mechanics. In addition, the discrete
unbounded state-space of OAM has been used to enhance classical and quantum
communications. Unambiguous mea- surement of OAM is a key part of all such
experiments. However, state-of-the-art methods for separating single photons
carrying a large number of different OAM values are limited to a theoretical
separation efficiency of about 77 percent. Here we demonstrate a method which
uses a series of unitary optical transformations to enable the measurement of
lights OAM with an experimental separation efficiency of more than 92 percent.
Further, we demonstrate the separation of modes in the angular position basis,
which is mutually unbiased with respect to the OAM basis. The high degree of
certainty achieved by our method makes it particu- larly attractive for
enhancing the information capacity of multi-level quantum cryptography systems
Generation of a spin-polarized electron beam by multipoles magnetic fields
The propagation of an electron beam in the presence of transverse magnetic
fields possessing integer topological charges is presented. The spin--magnetic
interaction introduces a nonuniform spin precession of the electrons that gains
a space-variant geometrical phase in the transverse plane proportional to the
field's topological charge, whose handedness depends on the input electron's
spin state. A combination of our proposed device with an electron orbital
angular momentum sorter can be utilized as a spin-filter of electron beams in a
mid-energy range. We examine these two different configurations of a partial
spin-filter generator numerically. The results of these analysis could prove
useful in the design of improved electron microscope.Comment: 7 pages, 7 figure
Integrated multi vector vortex beam generator
A novel method to generate and manipulate vector vortex beams in an
integrated, ring resonator based geometry is proposed. We show numerically that
a ring resonator, with an appropriate grating, addressed by a vertically
displaced access waveguide emits a complex optical field. The emitted beam
possesses a specific polarization topology, and consequently a transverse
intensity profile and orbital angular momentum. We propose a combination of
several concentric ring resonators, addressed with different bus guides, to
generate arbitrary orbital angular momentum qudit states, which could
potentially be used for classical and quantum communications. Finally, we
demonstrate numerically that this device works as an orbital angular momentum
sorter with an average cross-talk of -10 dB between different orbital angular
momentum channels.Comment: 8 pages, 7 figure
Recovering full coherence in a qubit by measuring half of its environment
When quantum systems interact with the environment they lose their quantum
properties, such as coherence. Quantum erasure makes it possible to restore
coherence in a system by measuring its environment, but accessing the whole of
it may be prohibitive: realistically one might have to concentrate only on an
accessible subspace and neglect the rest. If that is the case, how good is
quantum erasure? In this work we compute the largest coherence that we can expect to recover in a qubit, as a function of
the dimension of the accessible and of the inaccessible subspaces of its
environment. We then imagine the following game: we are given a uniformly
random pure state of qubits and we are asked to compute the largest
coherence that we can retrieve on one of them by optimally measuring a certain
number of the others. We find a surprising effect around the
value : the recoverable coherence sharply transitions between 0
and 1, indicating that in order to restore full coherence on a qubit we need
access to only half of its physical environment (or in terms of degrees of
freedom to just the square root of them). Moreover, we find that the
recoverable coherence becomes a typical property of the whole ensemble as
grows.Comment: 4 pages, 5 figure
- …