research

Recovering full coherence in a qubit by measuring half of its environment

Abstract

When quantum systems interact with the environment they lose their quantum properties, such as coherence. Quantum erasure makes it possible to restore coherence in a system by measuring its environment, but accessing the whole of it may be prohibitive: realistically one might have to concentrate only on an accessible subspace and neglect the rest. If that is the case, how good is quantum erasure? In this work we compute the largest coherence C\langle \mathcal C\rangle that we can expect to recover in a qubit, as a function of the dimension of the accessible and of the inaccessible subspaces of its environment. We then imagine the following game: we are given a uniformly random pure state of n+1n+1 qubits and we are asked to compute the largest coherence that we can retrieve on one of them by optimally measuring a certain number 0an0\leq a\leq n of the others. We find a surprising effect around the value an/2a\approx n/2: the recoverable coherence sharply transitions between 0 and 1, indicating that in order to restore full coherence on a qubit we need access to only half of its physical environment (or in terms of degrees of freedom to just the square root of them). Moreover, we find that the recoverable coherence becomes a typical property of the whole ensemble as nn grows.Comment: 4 pages, 5 figure

    Similar works