1,018 research outputs found

    Statewide Need for and Coordination of Training of Financial Aid Practitioners: The Case of Arizona

    Get PDF

    Federal Policy for Higher Education and the Dilemma of Student Financial Assistance in the 1980\u27s

    Get PDF

    Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Get PDF
    Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of ^(11)B MAS NMR in studies of metal borohydrides (BH_4) is mainly focused, revisiting the issue of dodecaborane formation and observation of ^(11)B{^1H} Nuclear Overhauser Effect

    Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides

    Get PDF
    In an effort to develop reversible metal borohydrides with high hydrogen storage capacities and low dehydriding temperature, doping LiBH4 with various metal halides and hydrides has been conducted. Several metal halides such as TiCl3, TiF3, and ZnF2 effectively reduced the dehydriding temperature through a cation exchange interaction. Some of the halide doped LiBH4 are partially reversible. The LiBH4 + 0.1TiF3 desorbed 3.5 wt % and 8.5 wt % hydrogen at 150 and 450 °C, respectively, with subsequent reabsorption of 6 wt % hydrogen at 500 °C and 70 bar observed. XRD and NMR analysis of the rehydrided samples confirmed the reformation of LiBH4. The existence of the (B12H12)−2 species in dehydrided and rehydrided samples gives insight into the resultant partial reversibility. A number of other halides, MgF2, MgCl2, CaCl2, SrCl2, and FeCl3, did not reduce the dehydriding temperature of LiBH4 significantly. XRD and TGA-RGA analyses indicated that an increasing proportion of halides such as TiCl3, TiF3, and ZnCl2 from 0.1 to 0.5 mol makes lithium borohydrides less stable and volatile. Although the less stable borohydrides such as LiBH4 + 0.5TiCl3, LiBH4 + 0.5TiF3, and LiBH4 + 0.5ZnCl2 release hydrogen at room temperature, they are not reversible due to unrecoverable boron loss caused by diborane emission. In most cases, doping that produced less stable borohydrides also reduced the reversible hydrogen uptake. It was also observed that halide doping changed the melting points and reduced air sensitivity of lithium borohydrides

    Study of aluminoborane compound AlB_4H_(11) for hydrogen storage

    Get PDF
    Aluminoborane compounds AlB_4H_(11), AlB_5H_(12), and AlB_6H_(13) were reported by Himpsl and Bond in 1981, but they have eluded the attention of the worldwide hydrogen storage research community for more than a quarter of a century. These aluminoborane compounds have very attractive properties for hydrogen storage: high hydrogen capacity (i.e., 13.5, 12.9, and 12.4 wt % H, respectively) and attractive hydrogen desorption temperature (i.e., AlB_4H_(11) decomposes at ~125 °C). We have synthesized AlB_4H_(11) and studied its thermal desorption behavior using temperature-programmed desorption with mass spectrometry, gas volumetric (Sieverts) measurement, infrared (IR) spectroscopy, and solid state nuclear magnetic resonance (NMR). Rehydrogenation of hydrogen-desorbed products was performed and encouraging evidence of at least partial reversibility for hydrogenation at relatively mild conditions is observed. Our chemical analysis indicates that the formula for the compound is closer to AlB_4H_(12) than AlB_4H_(11)

    ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments

    Get PDF
    The Arabidopsis aberrant testa shape (ats) mutant produces a single integument instead of the two integuments seen in wild-type ovules. Cellular anatomy and patterns of marker gene expression indicate that the single integument results from congenital fusion of the two integuments of the wild type. Isolation of the ATS locus showed it to encode a member of the KANADI (KAN) family of putative transcription factors, previously referred to as KAN4. ATS was expressed at the border between the two integuments at the time of their initiation, with expression later confined to the abaxial layer of the inner integument. In an inner no outer (ino) mutant background, where an outer integument does not form, the ats mutation led to amorphous inner integument growth. The kan1 kan2 double mutant exhibits a similar amorphous growth of the outer integument without affecting inner integument growth. We hypothesize that ATS and KAN1/KAN2 play similar roles in the specification of polarity in the inner and outer integuments, respectively, that parallel the known roles of KAN proteins in promoting abaxial identity during leaf development. INO and other members of the YABBY gene family have been hypothesized to have similar parallel roles in outer integument and leaf development. Together, these two hypotheses lead us to propose a model for normal integument growth that also explains the described mutant phenotypes
    corecore