115 research outputs found

    Dehydroamino acids: chemical multi-tools for late-stage diversification

    Get PDF
    α,β-Dehydroamino acids (dhAAs) are noncanonical amino acids that are found in a wide array of natural products and can be easily installed into peptides and proteins. dhAAs exhibit remarkable synthetic flexibility, readily undergoing a number of reactions, such as polar and single-electron additions, transition metal catalyzed cross-couplings, and cycloadditions. Because of the relatively mild conditions required for many of these reactions, dhAAs are increasingly being used as orthogonal chemical handles for late-stage modification of biomolecules. Still, only a fraction of the chemical reactivity of dhAAs has been exploited in such biorthogonal applications. Herein, we provide an overview of the broad spectrum of chemical reactivity of dhAAs, with special emphasis on recent efforts to adapt such transformations for biomolecules such as natural products, peptides, and proteins. We also discuss examples of enzymes from natural product biosynthetic pathways that have been found to catalyze many similar reactions; these enzymes provide mild, regio- and stereoselective, biocatalytic alternatives for future development. We anticipate that the continued investigation of the innate reactivity of dhAAs will furnish a diverse portfolio dhAA-based chemistries for use in chemical biology and drug discovery

    Thiopeptide Pyridine Synthase TbtD Catalyzes an Intermolecular Formal Aza-Diels-Alder Reaction

    Get PDF
    Thiopeptide pyridine synthases catalyze a multistep reaction involving a unique and nonspontaneous intramolecular aza-[4 + 2] cycloaddition between two dehydroalanines to forge a trisubstituted pyridine core. We discovered that the in vitro activity of pyridine synthases from the thiocillin and thiomuracin pathways are significantly enhanced by general base catalysis and that this broadly expands the enzymes substrate tolerance. Remarkably, TbtD is competent to perform an intermolecular cyclization in addition to its cognate intramolecular reaction, underscoring its versatility as a biocatalyst. These data provide evidence that pyridine synthases use a two-site substrate recognition model to engage and process their substrates

    On the regioselectivity of the Hanessian-Hullar reaction in 4,6-O-benzylidene protected galactopyranosides

    Get PDF
    The N-bromosuccinimide mediated fragmentation of methyl 4,6-O-benzylidene-β-d-galactopyranoside results in the formation of methyl 4-O-benzoyl-6-bromo-6-deoxy-β-d-galactopyranoside and methyl 4-O-benzoyl-3-bromo-3-deoxy-β-d-gulopyranoside, as opposed to the methyl 6-O-benzoyl-3-bromo-3-deoxy-β-d-gulopyranoside originally reported. The kinetic methyl 4-O-benzoyl-6-bromo-6-deoxy-β-d-galactopyranoside rearranges to the thermodynamic methyl 4-O-benzoyl-3-bromo-3-deoxy-β-d-gulopyranoside under the reaction conditions, likely via a 3,6-anhydro galactopyranoside. The NBS-mediated cleavage of 4,6-O-benzylidene acetals in the galactopyranoside series is therefore shown to conform to the regiochemistry observed in the corresponding gluco- and mannopyranoside series with preferential cleavage of the C6-O6 bond by an ionic mechanism

    Thiazolyl peptide antibiotic biosynthesis: A cascade of post-translational modifications on ribosomal nascent proteins

    Get PDF
    Antibiotics of the thiocillin, GE2270A, and thiostrepton class, which block steps in bacterial protein synthesis, contain a trithiazolyl (tetrahydro)pyridine core that provides the architectural constraints for high affinity binding to either the 50 S ribosomal subunit or elongation factor Tu. These mature antibiotic scaffolds arise from a cascade of post-translational modifications on 50-60-residue prepeptide precursors that trim away the N-terminal leader sequences (∼40 residues) while the C-terminal 14-18 residues are converted into the mature scaffold. In the producing microbes, the genes encoding the prepeptide open reading frames are flanked in biosynthetic clusters by genes encoding post-translational modification enzymes that carry out lantibiotic-type dehydrations of Ser and Thr residues to dehydroamino acid side chains, cyclodehydration and oxidation of cysteines to thiazoles, and condensation of two dehydroalanine residues en route to the (tetrahydro)pyridine core. The trithiazolyl pyridine framework thus arises from post-translational modification of the peptide backbone of three Cys and two Ser residues of the prepeptide

    Genetic interception and structural characterization of thiopeptide cyclization precursors from bacillus cereus

    Get PDF
    The pyridine core of the thiocillins has long been postulated to arise from a late-stage tail-to-tail condensation of two dehydroalanines. Genetic disruption of tclM, a proposed "Diels-Alderase", allowed isolation of acyclic precursors to this pyridine ring. The isolated products possess the full cohort of post-translational modifications that are normally displayed by the thiocillins, including dehydrobutyrines, thiazoles, C-terminal decarboxylation, and the two previously unconfirmed dehydroalanines. Additionally, leader peptides have undergone extensive N-terminal degradation and the remaining leader peptide residues have been N-succinylated. These results identify TclM and its homologues in other thiazolyl peptide producing strains as the enzymes responsible for the trans-annular heteroannulation at core of this class of molecules

    Expanding the Chemical Diversity of Genetically Encoded Libraries

    Get PDF
    The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques

    Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus

    Get PDF
    (Figure Presented) The thiocillins are natural-product antibiotics derived from ribosomally encoded peptides that undergo extensive posttranslational modifications to yield the mature trithiazolylpyridine-containing macrocyclic compound. Poor pharmacokinetic properties have prevented the clinical use of these highly potent antibiotics. Through in vivo manipulation of the gene responsible for production of the thiocillin precursor peptide, we have generated 65 novel thiocillin variants, allowing us to explore structure-activity relationships involved in both precursor peptide maturation and antibiotic activity

    Dynamic Docking of Conformationally Constrained Macrocycles: Methods and Applications

    Get PDF
    Many natural products consist of large and flexible macrocycles that engage their targets via multiple contact points. This combination of contained flexibility and large contact area often allows natural products to bind at target surfaces rather than deep pockets, making them attractive scaffolds for inhibiting protein-protein interactions and other challenging therapeutic targets. The increasing ability to manipulate such compounds either biosynthetically or via semisynthetic modification means that these compounds can now be considered as starting points for medchem campaigns rather than solely as ends. Modern medchem benefits substantially from rational improvements made on the basis of molecular docking. As such, docking methods have been enhanced in recent years to deal with the complicated binding modalities and flexible scaffolds of macrocyclic natural products and natural product-like structures. Here, we comprehensively review methods for treating and docking these large macrocyclic scaffolds and discuss some of the resulting advances in medicinal chemistry

    Manipulation of thiocillin variants by prepeptide gene replacement: Structure, conformation, and activity of heterocycle substitution mutants

    Get PDF
    Bacillus cereus ATCC 14579 converts the C-terminal 14 residues of a 52-mer prepeptide into a related set of eight variants of the thiocillin subclass of thiazolyl peptide antibiotics by a cascade of post-translational modifications that alter 13 of those 14 residues. We have introduced prepeptide gene variants into a knockout strain to conduct an alanine scan of all 14 progenitor residues, as well as a serine scan of the six cysteine residues that are converted to thiazoles in the mature natural product. No mature scaffolds were detected for the S1A and S10A mutants, consistent with their roles as the source of the pyridine core. In both the alanine and serine scans, only one substitution mutant failed to produce a mature scaffold: cysteine 11. Cysteine to serine mutants gave mixture of dehydrations, aromatizations, and unaltered alcohol side chains depending on position. Overall, substitutions that altered the trithiazolylpyridine core or reduced the conformational rigidity of the 26-membered macrocyclic loop led to loss of antibiotic activity. In total, 21 peptide mutants were cultured, from which production of 107 compounds was observed and 94 compounds, representing 17 structural mutants, were assayed for antibiotic activity. High-resolution NMR solution structures were determined for one mutant and one wild-type compound. These structures demonstrate that the tight conformational rigidity of the natural product is severely disrupted by loss of even a single heterocycle, perhaps accounting for the attendant loss of activity in such mutants

    Mapping the sites of the lipoprotein lipase (LPL)–angiopoietin-like protein 4 (ANGPTL4) interaction provides mechanistic insight into LPL inhibition

    Get PDF
    Cardiovascular disease has been the leading cause of death throughout the world for nearly 2 decades. Hypertriglyceridemia affects more than one-third of the population in the United States and is an independent risk factor for cardiovascular disease. Despite the frequency of hypertriglyceridemia, treatment options are primarily limited to diet and exercise. Lipoprotein lipase (LPL) is an enzyme responsible for clearing triglycerides from circulation, and its activity alone can directly control plasma triglyceride concentrations. Therefore, LPL is a good target for triglyceride-lowering therapeutics. One approach for treating hypertriglyceridemia may be to increase the amount of enzymatically active LPL by preventing its inhibition by angiopoietin-like protein 4 (ANGPTL4). However, little is known about how these two proteins interact. Therefore, we used hydrogen– deuterium exchange MS to identify potential binding sites between LPL and ANGPTL4. We validated sites predicted to be located at the protein–protein interface by using chimeric variants of LPL and an LPL peptide mimetic. We found that ANGPTL4 binds LPL near the active site at the lid domain and a nearby -helix. Lipase lid domains cover the active site to control both enzyme activation and substrate specificity. Our findings suggest that ANGPTL4 specifically inhibits LPL by binding the lid domain, which could prevent substrate catalysis at the active site. The structural details of the LPL–ANGPTL4 interaction uncovered here may inform the development of therapeutics targeted to disrupt this interaction for the management of hypertriglyceridemia
    • …
    corecore