295 research outputs found

    Search for supersymmetry in final states with disappearing tracks in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for charged, long-lived supersymmetric particles in final states with one or more disappearing tracks. The search is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the CERN LHC between 2016 and 2018, corresponding to an integrated luminosity of 137 fb1^{-1}. The search is performed over final states characterized by varying numbers of jets, b-tagged jets, electrons, and muons. The length of signal-candidate tracks in the plane perpendicular to the beam axis is used to characterize the lifetimes of wino- and higgsino-like charginos produced in the context of the minimal supersymmetric standard model. The dEE/dxx energy loss of signal-candidate tracks is used to increase the sensitivity to charginos with a large mass and thus a small Lorentz boost. The observed results are found to be statistically consistent with the background-only hypothesis. Limits on the pair production cross section of gluinos and squarks are presented in the framework of simplified models of supersymmetric particle production and decay, and for electroweakino production based on models of wino and higgsino dark matter. The limits presented are the most stringent to date for scenarios with light third-generation squarks and a wino- or higgsino-like dark matter candidate capable of explaining the known dark matter relic density

    Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe identification of prompt and isolated muons, as well as muons from heavy-flavour hadron decays, is an important task. We developed two multivariate techniques to provide highly efficient identification for muons with transverse momentum greater than 10\GeV. One provides a continuous variable as an alternative to a cut-based identification selection and offers a better discrimination power against misidentified muons. The other one selects prompt and isolated muons by using isolation requirements to reduce the contamination from nonprompt muons arising in heavy-flavour hadron decays. Both algorithms are developed using 59.7 fb1^{-1} of proton-proton collisions data at a centre-of-mass energy of s\sqrt{s} = 13 TeV collected in 2018 with the CMS experiment at the CERN LHC

    Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the μμ\mu\mubb and ττ\tau\taubb final states

    No full text
    International audienceA search for exotic decays of the Higgs boson (H) with a mass of 125 GeV to a pair of light pseudoscalars a1\mathrm{a}_1 is performed in final states where one pseudoscalar decays to two b quarks and the other to a pair of muons or τ\tau leptons. A data sample of proton-proton collisions at s\sqrt{s} = 13 TeV corresponding to an integrated luminosity of 138 fb1^{-1} recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level (CL) on the Higgs boson branching fraction to μμ\mu\mubb and to ττ\tau\taubb, via a pair of a1\mathrm{a}_1s. The limits depend on the pseudoscalar mass ma1m_{\mathrm{a}_1} and are observed to be in the range (0.17-3.3) ×\times 104^{-4} and (1.7-7.7) ×\times 102^{2} in the μμ\mu\mubb and ττ\tau\taubb final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine model-independent upper limits on the branching fraction B\mathcal{B}(H \to a1a1\mathrm{a}_1\mathrm{a}_1 \to \ell\ellbb) at 95% CL, with \ell being a muon or a τ\tau lepton. For different types of 2HDM+S, upper bounds on the branching fraction B\mathcal{B}(H \to a1a1\mathrm{a}_1\mathrm{a}_1) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space, B(\mathcal{B}(H \to a1a1\mathrm{a}_1\mathrm{a}_1) values above 0.23 are excluded at 95% CL for ma1m_{\mathrm{a}_1} values between 15 and 60 GeV

    Search for dark matter particles in W+^+W^- events with transverse momentum imbalance in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for dark matter particles is performed using events with a pair of W bosons and large missing transverse momentum. Candidate events are selected by requiring one or two leptons (=\ell = electrons or muons). The analysis is based on proton-proton collision data collected at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC and corresponding to an integrated luminosity of 138 fb1^{-1}. No significant excess over the expected standard model background is observed in the ν\ell\nuqq and 2\ell2ν\nu final states of the W+^+W^- boson pair. Limits are set on dark matter production in the context of a simplified dark Higgs model, with a dark Higgs boson mass above the W+^+W^- mass threshold. The dark matter phase space is probed in the mass range 100-300 GeV, extending the scope of previous searches. Current exclusion limits are improved in the range of dark Higgs masses from 160 to 250 GeV, for a dark matter mass of 200 GeV

    Measurement of the primary Lund jet plane density in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA measurement is presented of the primary Lund jet plane (LJP) density in inclusive jet production in proton-proton collisions. The analysis uses 138 fb1^{-1} of data collected by the CMS experiment at s\sqrt{s} = 13 TeV. The LJP, a representation of the phase space of emissions inside jets, is constructed using iterative jet declustering. The transverse momentum kTk_\mathrm{T} and the splitting angle ΔR\Delta R of an emission relative to its emitter are measured at each step of the jet declustering process. The average density of emissions as function of ln(kT\ln(k_\mathrm{T}/GeV) and ln(R/ΔR)\ln(R/\Delta R) is measured for jets with distance parameters RR = 0.4 or 0.8, transverse momentum pT>p_\mathrm{T} \gt 700 GeV, and rapidity y<\vert y\vert \lt 1.7. The jet substructure is measured using the charged-particle tracks of the jet. The measured distributions, unfolded to the level of stable particles, are compared with theoretical predictions from simulations and with perturbative quantum chromodynamics calculations. Due to the ability of the LJP to factorize physical effects, these measurements can be used to improve different aspects of the physics modeling in event generators

    Measurement of the τ\tau lepton polarization in Z boson decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe polarization of τ\tau leptons is measured using leptonic and hadronic τ\tau lepton decays in Z τ+τ\to\tau^+\tau^- events in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by CMS at the CERN LHC with an integrated luminosity of 36.3 fb1^{-1}. The measured τ\tau^- polarization at the Z boson mass pole is Pτ\mathcal{P}_{\tau}(Z) = -0.144±\pm0.006 (stat) ±\pm 0.014 (syst) = -0.144±\pm0.015, in good agreement with the measurement of the τ\tau lepton asymmetry parameter of AτA_{\tau} = 0.1439±\pm0.0043 = Pτ-\mathcal{P}_{\tau}(Z) at LEP. The τ\tau polarization depends on the ratio of the vector to axial-vector couplings of the τ\tau leptons in the neutral current expression, and thus on the effective weak mixing angle sin2θWeff\sin^{2}\theta_\mathrm{W}^{\text{eff}}, independently of the Z boson production mechanism. The obtained value sin2θWeff\sin^{2}\theta_\mathrm{W}^{\text{eff}} = 0.2319±\pm0.0008 (stat) ±\pm 0.0018 (syst) = 0.2319±\pm0.0019 is in good agreement with measurements at e+^+e^- colliders

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s= \sqrt{s} = 5.02 TeV

    No full text
    The inclusive jet cross section is measured as a function of jet transverse momentum pT p_{\mathrm{T}} and rapidity y y . The measurement is performed using proton-proton collision data at s= \sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4pb1\,\text{pb}^{-1}. The jets are reconstructed with the anti-kT k_{\mathrm{T}} algorithm using a distance parameter of R= R= 0.4, within the rapidity interval y< |y| < 2, and across the kinematic range 0.06 <pT< < p_{\mathrm{T}} < 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS \alpha_\mathrm{S} .The inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}

    Measurement of the double-differential inclusive jet cross section in proton-proton collisions at s\sqrt{s} = 5.02 TeV

    No full text
    International audienceThe inclusive jet cross section is measured as a function of jet transverse momentum pTp_\mathrm{T} and rapidity yy. The measurement is performed using proton-proton collision data at s\sqrt{s} = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb1^{-1}. The jets are reconstructed with the anti-kTk_\mathrm{T} algorithm using a distance parameter of RR = 0.4, within the rapidity interval y\lvert y\rvert<\lt 2, and across the kinematic range 0.06 <\ltpTp_\mathrm{T}<\lt 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization/factorization scales and the strong coupling αS\alpha_\mathrm{S}
    corecore