775 research outputs found

    One-dimensional description of a Bose-Einstein condensate in a rotating closed-loop waveguide

    Full text link
    We propose a general procedure for reducing the three-dimensional Schrodinger equation for atoms moving along a strongly confining atomic waveguide to an effective one-dimensional equation. This procedure is applied to the case of a rotating closed-loop waveguide. The possibility of including mean-field atomic interactions is presented. Application of the general theory to characterize a new concept of atomic waveguide based on optical tweezers is finally discussed

    Momentum spectroscopy of 1D phase fluctuations in Bose-Einstein condensates

    Get PDF
    We measure the axial momentum distribution of Bose-Einstein condensates with an aspect ratio of 152 using Bragg spectroscopy. We observe the Lorentzian momentum distribution characteristic of one-dimensional phase fluctuations. The temperature dependence of the width of this distribution provides a quantitative test of quasi-condensate theory. In addition, we observe a condensate length consistent with the absence of density fluctuations, even when phase fluctuations are large.Comment: 4 pages, 3 figures; submitted to Phys. Rev. Let

    Feedback control of trapped coherent atomic ensembles

    Full text link
    We demonstrate how to use feedback to control the internal states of trapped coherent ensembles of two-level atoms, and to protect a superposition state against the decoherence induced by a collective noise. Our feedback scheme is based on weak optical measurements with negligible back-action and coherent microwave manipulations. The efficiency of the feedback system is studied for a simple binary noise model and characterized in terms of the trade-off between information retrieval and destructivity from the optical probe. We also demonstrate the correction of more general types of collective noise. This technique can be used for the operation of atomic interferometers beyond the standard Ramsey scheme, opening the way towards improved atomic sensors.Comment: 9 pages, 6 figure

    Understanding the production of dual BEC with sympathetic cooling

    Full text link
    We show, both experimentally and theoretically, that sympathetic cooling of 87^{87}Rb atoms in the F=2,mF=2>|F=2,m_F=2> state by evaporatively cooled atoms in the F=1,mF=1>|F=1,m_F=-1> state can be precisely controlled to produce dual or single condensate in either state. We also study the thermalization rate between two species. Our model renders a quantitative account of the observed role of the overlap between the two clouds and points out that sympathetic cooling becomes inefficient when the masses are very different. Our calculation also yields an analytical expression of the thermalization rate for a single species.Comment: 3 figure

    Momentum Spectroscopy of Phase Fluctuations of an Elongated Bose-Einstein Condensate

    Full text link
    We have measured the momentum distribution of an elongated BEC (aspect ratio of 152), for temperatures below the critical temperature. The corresponding coherence length is significantly smaller than the condensate length in a wide range of temperature, in quantitative agreement with theoretical predictions. The Lorentzian shape of the momentum spectrum supports the image of a phase fluctuating quasicondensate.Comment: Proceedings of the International Conference on Laser Spectroscopy (ICOLS 03), Cairns, Australia, july 200

    The critical temperature of a trapped, weakly interacting Bose gas

    Full text link
    We report on measurements of the critical temperature of a harmonically trapped, weakly interacting Bose gas as a function of atom number. Our results exclude ideal-gas behavior by more than two standard deviations, and agree quantitatively with mean-field theory. At our level of sensitivity, we find no additional shift due to critical fluctuations. In the course of this measurement, the onset of hydrodynamic expansion in the thermal component has been observed. Our thermometry method takes this feature into account.Comment: version 2, 20 octobre 200

    One-dimensional behavior of elongated Bose-Einstein condensates

    Full text link
    We study the properties of elongated Bose-Einstein condensates. First, we show that the dimensions of the condensate after expansion differs from the 3D Thomas-Fermi regime. We also study the coherence length of such elongated condensates.Comment: proceeding of Quantum Gases in Low Dimension, Les Houches 2003, 8 pages, 5 figure

    Spin-squeezing and Dicke state preparation by heterodyne measurement

    Full text link
    We investigate the quantum non-demolition (QND) measurement of an atomic population based on a heterodyne detection and show that the induced back-action allows to prepare both spin-squeezed and Dicke states. We use a wavevector formalism to describe the stochastic process of the measurement and the associated atomic evolution. Analytical formulas of the atomic distribution momenta are derived in the weak coupling regime both for short and long time behavior, and they are in good agreement with those obtained by a Monte-Carlo simulation. The experimental implementation of the proposed heterodyne detection scheme is discussed. The role played in the squeezing process by the spontaneous emission is considered
    corecore