3,402 research outputs found
Carbon Dioxide Observational Platform System (CO-OPS), feasibility study
The Carbon Dioxide Observational Platform System (CO-OPS) is a near-space, geostationary, multi-user, unmanned microwave powered monitoring platform system. This systems engineering feasibility study addressed identified existing requirements such as: carbon dioxide observational data requirements, communications requirements, and eye-in-the-sky requirements of other groups like the Defense Department, the Forestry Service, and the Coast Guard. In addition, potential applications in: earth system science, space system sciences, and test and verification (satellite sensors and data management techniques) were considered. The eleven month effort is summarized. Past work and methods of gathering the required observational data were assessed and rough-order-of magnitude cost estimates have shown the CO-OPS system to be most cost effective (less than $30 million within a 10 year lifetime). It was also concluded that there are no technical, schedule, or obstacles that would prevent achieving the objectives of the total 5-year CO-OPS program
Anisotropic properties of MgB2 by torque magnetometry
Anisotropic properties of superconducting MgB2 obtained by torque
magnetometry are compared to theoretical predictions, concentrating on two
issues. Firstly, the angular dependence of Hc2 is shown to deviate close to Tc
from the dependence assumed by anisotropic Ginzburg-Landau theory. Secondly,
from the evaluation of torque vs angle curves it is concluded that the
anisotropy of the penetration depth gamma_lambda has to be substantially higher
at low temperature than theoretical estimates, at least in fields higher than
0.2 T.Comment: 2 p.,2 Fig., submitted to Physica C (M2S-Rio proceedings); v2: 1 ref
adde
Noether symmetries for two-dimensional charged particle motion
We find the Noether point symmetries for non-relativistic two-dimensional
charged particle motion. These symmetries are composed of a quasi-invariance
transformation, a time-dependent rotation and a time-dependent spatial
translation. The associated electromagnetic field satisfy a system of
first-order linear partial differential equations. This system is solved
exactly, yielding three classes of electromagnetic fields compatible with
Noether point symmetries. The corresponding Noether invariants are derived and
interpreted
Specific heat of MgB_2 after irradiation
We studied the effect of disorder on the superconducting properties of
polycrystalline MgB_2 by specific-heat measurements. In the pristine state,
these measurements give a bulk confirmation of the presence of two
superconducting gaps with 2 Delta 0 / k_B T_c = 1.3 and 3.9 with nearly equal
weights. The scattering introduced by irradiation suppresses T_c and tends to
average the two gaps although less than predicted by theory. We also found that
by a suitable irradiation process by fast neutrons, a substantial bulk increase
of dH_{c2}/dT at T_c can be obtained without sacrificing more than a few
degrees in T_c. The upper critical field of the sample after irradiation
exceeds 28 T at T goes to 0 K.Comment: 11 pages text, 6 figures, accepted by Journal of Physics: Condensed
Matte
Infrared properties of MgAlBC) single crystals in the normal and superconducting state
The reflectivity of -oriented MgAl(BC) single crystals has been measured by means of infrared
microspectroscopy for cm. An increase with doping of
the scattering rates in the and bands is observed, being more
pronounced in the C doped crystals. The -band plasma frequency also
changes with doping due to the electron doping, while the -band one is
almost unchanged. Moreover, a interband excitation, predicted
by theory, is observed at eV in the undoped sample,
and shifts to lower energies with doping. By performing theoretical calculation
of the doping dependence , the experimental observations can be
explained with the increase with electron doping of the Fermi energy of the
holes in the -band. On the other hand, the band density of
states seems not to change substantially. This points towards a reduction
driven mainly by disorder, at least for the doping level studied here. The
superconducting state has been also probed by infrared synchrotron radiation
for cm in one pure and one C-doped sample. In the
undoped sample ( = 38.5 K) a signature of the -gap only is observed.
At = 0.08 ( = 31.9 K), the presence of the contribution of the
-gap indicates dirty-limit superconductivity in both bands.Comment: 12 pages, 9 figure
- …