52 research outputs found

    Cfd investigation of spacer-filled channels for membrane distillation

    Get PDF
    The membrane distillation (MD) process for water desalination is affected by temperature polarization, which reduces the driving force and the efficiency of the process. To counteract this phenomenon, spacer-filled channels are used, which enhance mixing and heat transfer but also cause higher pressure drops. Therefore, in the design of MD modules, the choice of the spacer is crucial for process efficiency. In the present work, different overlapped spacers are investigated by computational fluid dynamics (CFD) and results are compared with experiments carried out with thermochromic liquid crystals (TLC). Results are reported for different flow attack angles and for Reynolds numbers (Re) ranging from ~200 to ~800. A good qualitative agreement between simulations and experiments can be observed for the areal distribution of the normalized heat transfer coefficient. Trends of the average heat transfer coefficient are reported as functions of Re for the geometries investigated, thus providing the basis for CFD-based correlations to be used in higher-scale process models

    Experimental and numerical analysis of the flow behaviour of magnesium wrought alloy AZ31 for deep drawing processes at elevated temperatures

    Get PDF
    In the present paper, the flow behaviour of the magnesium wrought alloy AZ31 is analysed experimentally and numerically. Especial in deep drawing processes is the knowledge of the flow behaviour important. Depending on the type and size of the hardening and softening of a material, the process parameters such as temperature and sheet thickness must be adjusted to produce a flawless part. The material behaviour of magnesium is different compared to conventional steels, because the hardening and softening effects are changing highly with increasing temperature. For this purpose, yield curves were recorded experimentally at different temperatures by means of layer compression tests. Following the yield curves were converted based on the principle of the plastic work equivalence for finite element simulations (FEA). For validation, numerical simulations of the layer compression test at elevated temperature using the converted yield curve were carried out

    Creating load-adapted mechanical joints between tubes and sheets by controlling the material flow under plastically unstable tube upsetting

    Get PDF
    Mechanical joining processes provide various advantages over conventional fusion welding of metallic components such as shorter cycle times, little or no heat input and reduced need for subsequent surface finishing operations. Several investigations in the past have shown that joints between tubes and sheets or plates can be manufactured by upsetting operations. Under axial compression, the tube develops a plastic instability in form of bulge. In-between two such bulges, a force and form fit to sheet material can be created. Previous work concentrated on forming fully developed bulges, i.e., at the end of the bulging process, both hinges of the bulge are in contact. This paper presents a numerical and experimental study aiming at optimizing the bulge shape to increase the bearable limit loads. Two new bulge designs are investigated, an 'arrow bulge' and a 'wave bulge'. The paper details the results of FE-simulations of the bulge shapes under bending and torsion loads. Forming tools were designed and both bulge shapes were produced experimentally. The results show that the material flow under compressive plastic instability can be controlled and that the resulting bulge shapes yield improved strength in various load cases

    Numerical Investigation of the Oxide Scale Deformation Behaviour with Consideration of Carbon Content during Hot Forging

    Get PDF
    Due to increasing product requirements the numerical simulation has become a powerful tool for the effective and efficient design of individual process steps as well as entire process chains. In order to model hot forging processes with finite element based numerical methods realistic models are required which consider the detailed mathematical description of the material behaviour during the forging process, the surface phenomena at die and workpiece as well as machine kinematics. Although this data exist for several steel grades, yet general mathematical models for steel groups based on alloying elements like carbon content are not available. In hot forging the surface properties are strongly affected by the growth of oxide scale, which influences material flow, friction as well as product quality of the finished components. The influence of different carbon contents on oxide scale growth and material behaviour is investigated by considering three different steel grades (C15, C45 and C60). For a general description of the material behaviour, an empirical approach is used to implement mathematical functions so as to express the relationship between flow stress and dominant influence variables like alloying elements, initial microstructure and reheating mode. The oxide scale consists of three different components namely wuestite, magnetite and haematite. In order to take the oxide scale into account, additional models are required to describe the growth kinematic and flow behaviour of the oxide scale components. The mathematical relationship between oxidation time, temperature, carbon content and oxide scale height is based on Arrhenius approach. The deformation behaviour of oxide scale is separately modelled for each component with parameterized flow curves. This paper gives first approaches on the numerical modelling of plastic deformation of oxide scale in a hot forging process. The main focus lies on the involvement of the different materials as well as the calculation and assignment of material properties in dependence of current process parameters by using subroutines. The numerical model and subroutines will be implemented in the FE-Software simufact.forming. A validation of the numerical model will be carried out by comparison of numerical results with experimental data

    Mechanical properties of femoral trabecular bone in dogs

    Get PDF
    BACKGROUND: Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic modulus of trabecular bone in canine femoral heads by ultrasound testing and to assess whether assuming isotropy of the cancellous bone in femoral heads in dogs is a valid simplification. METHODS: From 8 euthanized dogs, both femora were obtained and cubic specimens were cut from the centre of the femoral head which were oriented along the main pressure and tension trajectories. The specimens were tested using a 100 MHz ultrasound transducer in all three orthogonal directions. The directional elastic moduli of trabecular bone tissue and degrees of anisotropy were calculated. RESULTS: The elastic modulus along principal bone trajectories was found to be 11.2 GPa ± 0.4, 10.5 ± 2.1 GPa and 10.5 ± 1.8 GPa, respectively. The mean density of the specimens was 1.40 ± 0.09 g/cm(3). The degrees of anisotropy revealed a significant inverse relationship with specimen densities. No significant differences were found between the elastic moduli in x, y and z directions, suggesting an effective isotropy of trabecular bone tissue in canine femoral heads. DISCUSSION: This study presents detailed data about elastic moduli of trabecular bone tissue obtained from canine femoral heads. Limitations of the study are the relatively small number of animals investigated and the measurement of whole specimen densities instead of trabecular bone densities which might lead to an underestimation of Young's moduli. Publications on elastic moduli of trabecular bone tissue present results that are similar to our data. CONCLUSION: This study provides data about directional elastic moduli and degrees of anisotropy of canine femoral head trabecular bone and might be useful for biomechanical modeling of proximal canine femora

    Analiza numeryczna uszkodzeń narzędzi w procesach kucia na gorąco

    No full text
    The determination of tool failure is of great interest for increasing the efficiency of hot forging processes. This paper presents an enhanced Finite-Element (FE) based approach for die wear calculation, in order to realize a design of hot forging dies which is optimized in terms of tool service life. In the first step, basic investigations concerning the development of the tool material's hardness taking thermal softening into account are introduced, based on a model process. In addition, the approach mentioned is calibrated by substantial industrial data to obtain realistic results over a larger number of operating cycles. Beyond, first results of numerical investigations on thermal-mechanical fatigue of hot forging dies are shown.Określanie (przewidywanie) awarii narzędzi jest bardzo ważne dla zwiększenia wydajności procesów kucia na gorąco. Praca niniejsza przedstawia oparte na metodzie elementów skończonych podejście do obliczania zużycia matryc w celu skonstruowania matryc do kucia na gorąco, które byłyby zoptymalizowane w aspekcie trwałości. Najpierw, wprowadzono podstawowe badania nad rozwojem twardości materiału narzędzia z uwzględnieniem zmiękczenia termicznego, oparte na procesie modelowym. Ponadto, podejście to opiera się na solidnych danych przemysłowych, gdzie uzyskano realistyczne wyniki z wielkiej liczby cykli pracy. Poza tym przedstawiono pierwsze wyniki badań numerycznych nad cieplno-mechanicznym zmęczeniem matryc do kucia na gorąco

    Axial Force Transfer of Buckled Drill Pipe in Deviated Wells

    No full text
    International audienc

    Numerical analysis of draw bending of load-adapted sheet metal profiles

    No full text
    corecore