3 research outputs found
L’importance des échanges internationaux des ressources phytogénétiques pour l’amélioration des cultures au Burkina Faso
L'interdépendance des pays sur les ressources génétiques des cultures et fourrages
dont ils ont bessoin pour leur sécurité alimentaire est une des raisons de la mise en
place du Traité International sur les Ressources Phytogénétiques pour l'Alimentation
et l'Agriculture et de son système multilatéral d'accès et de partage des avantages. Une
connaissance plus profonde de la façon dont les pays ont bénéficié de l'échange de
matériel génétique dans le passé et continueront à bénéficier à l'avenir est nécessaire
pour faire avancer la mise en oeuvre du Système multilatéral et la création d'une
réserve mondiale des ressources phytogénétiques pour le développement agricole des
pays et leur adaptation au changement climatique. En utilisant Burkina Faso comme
un exemple et le millet, le riz et le maïs comme cultures principales, cet étude
présente les mouvements de matériel génétique tant à l'intérieur et à l'extérieur du
pays, au cours des dernières années et dans l'avenir. Il illustre le degré de dépendance
du Burkina Faso du matériel génétique provenant d'autres pays pour sa sécurité
alimentaire et aussi l’utilisation par des autres pays du matériel génétique burkinabé.
L'information qu’on présente peut encourager et faciliter la mise en oeuvre du Traité
international et de son Système multilatéral dans le pays
The importance of international exchanges of plant genetic resources for national crop improvement in Burkina Faso
One of the main considerations underlying the establishment of the International Treaty on
Plant Genetic Resources for Food and Agriculture and its Multilateral System of Access and
Benefit Sharing is the recognition of countries’ high interdependence on the genetic resources
of the crops and forages which they depend upon for their food security. A continued
appreciation of how countries have benefited from facilitated exchange of germplasm in the
past and are likely to continue doing so in the future is needed, in order to move forward the
implementation of the Multilateral System and creating a truly global pool of genetic
resources for countries’ agricultural development and adaptation to climate change. Using
Burkina Faso as a case and millet, rice and maize as key crops, the paper presents a picture of
the dynamics of their genetic resources, both inside and outside of the country, over past years
and into the future. It illustrates the extent to which Burkina Faso is dependent upon
germplasm from other countries for its food security, and how, in a complementary manner,
other countries rely upon germplasm from Burkina Faso. It is hoped that the information
presented here may encourage and facilitate the implementation of the International Treaty
and its Multilateral System in the country
Assessment of Genetic Variability of Three Types of Sorghum Cultivated in Burkina Faso Using Morphoagronomic Quantitative Traits and Brix
In Burkina Faso, three types of sorghum are mainly grown. Despite their genetic proximity revealed by molecular markers, the identification of distinctive agro-morphological traits between sweet grain sorghum, sweet sorghum and grain sorghum could contribute to better management of their genetic resources. Thus, 42 genotypes consisting of the three sorghum types were evaluated in a three replicate Fisher incomplete block design using 20 quantitative traits. The results showed a high variability of traits within each sorghum type and a greater closeness between sweet grain sorghum and sweet stalk sorghum. In addition, nine traits clearly discriminated sweet grain sorghum from the other sorghum types. Sweet grain sorghum expressed the highest values of the sowing-heading cycle, leaf sheath length, stem diameter, productive tillers, and panicle width and the lowest values of mean heading-flowering difference, 100-grain weight, and Brix. Moreover, the ‘sorghum type’ factor is less preponderant than the ‘genotype factor’ in expressing the variability of all traits. Therefore, the 42 genotypes are organized into three genetic groups independently of the sorghum- type factor, where the group I contains all sweet grain sorghum genotypes and three sweet stalk sorghum genotypes. These results could be exploited in sorghum breeding programs