5 research outputs found

    ANALYZING THE LIFE-CYCLE OF UNSTABLE SLOPES USING APPLIED REMOTE SENSING WITHIN AN ASSET MANAGEMENT FRAMEWORK

    Get PDF
    An asset management framework provides a methodology for monitoring and maintaining assets, which include anthropogenic infrastructure (e.g., dams, embankments, and retaining structures) and natural geological features (e.g., soil and rock slopes). It is imperative that these assets operate efficiently, effectively, safely, and at a high standard since many assets are located along transportation corridors (highways, railways, and waterways) and can cause severe damage if compromised. Assets built on or around regions prone to natural hazards are at an increased risk of deterioration and failure. The objective of this study is to utilize remote sensing techniques such as InSAR, LiDAR, and optical photogrammetry to identify assets, assess past and current conditions, and perform long-term monitoring in transportation corridors and urbanized areas prone to natural hazards. Provided are examples of remote sensing techniques successfully applied to various asset management procedures: the characterization of rock slopes (Chapter 2), identification of potentially hazardous slopes along a railroad corridor (Chapter 3), monitoring subsidence rates of buildings in San Pedro, California (Chapter 4), and mapping displacement rates on dams in India (Chapter 5) and California (Chapter 6). A demonstration of how InSAR can be used to map slow landslides (those with a displacement rate \u3c 16 mm/year and may be undetectable without sensitive instrumentation) and update the California Landslide Inventory on the Palos Verdes Peninsula is provided in Chapter 7. Long-term landslide monitoring using optical photogrammetry, GPS, and InSAR measurements is also used to map landslide activity at three orders of magnitude (meter to millimeter scales) in Chapter 8. Remote sensing has proven to be an effective tool at measuring ground deformation, which is an implicit indicator of how geotechnical asset condition changes (e.g., deteriorates) over time. Incorporating these techniques into a geotechnical asset management framework will provide greater spatial and temporal data for preventative approaches towards natural hazards

    Evidence of instability in previously-mapped landslides as measured using GPS, optical, and SAR data between 2007 and 2017: A case study in the Portuguese Bend Landslide Complex, California

    Get PDF
    Velocity dictates the destructive potential of a landslide. A combination of synthetic aperture radar (SAR), optical, and GPS data were used to maximize spatial and temporal coverage to monitor continuously-moving portions of the Portuguese Bend landslide complex on the Palos Verdes Peninsula in Southern California. Forty SAR images from the COSMO-SkyMed satellite, acquired between 19 July 2012 and 27 September 2014, were processed using Persistent Scatterer Interferometry (PSI). Eight optical images from the WorldView-2 satellite, acquired between 20 February 2011 and 16 February 2016, were processed using the Co-registration of Optically Sensed Images and Correlation (COSI-Corr) technique. Displacement measurements were taken at GPS monuments between September 2007 and May 2017. Incremental and average deformations across the landslide complex were measured using all three techniques. Velocity measured within the landslide complex ranges from slow (\u3e 1.6 m/year) to extremely slow (\u3c 16 mm/year). COSI-Corr and GPS provide detailed coverage of m/year-scale deformation while PSI can measure extremely slow deformation rates (mm/year-scale), which COSI-Corr and GPS cannot do reliably. This case study demonstrates the applicability of SAR, optical, and GPS data synthesis as a complimentary approach to repeat field monitoring and mapping to changes in landslide activity through time

    Mapping of slow landslides on the Palos Verdes Peninsula using the California landslide inventory and persistent scatterer interferometry

    No full text
    Extremely slow landslides, those with a displacement rate \u3c16 mm/year, may be imperceptible without proper instrumentation. These landslides can cause infrastructure damage on a long-term timescale. The objective is to identify these landslides through the combination of information from the California landslide inventory (CLI) and ground displacement rates using results from persistent scatterer interferometry (PSI), an interferometric synthetic aperture radar (InSAR) stacking technique, across the Palos Verdes Peninsula in California. A total of 34 ENVISAT radar images (acquired between 2005 and 2010) and 40 COSMO-SkyMed radar images (acquired between 2012 and 2014) were processed. An InSAR landslide inventory (ILI) is created using four criteria: minimum PS count, average measured ground velocity, slope angle, and slope aspect. The ILI is divided into four categories: long-term slides (LTSs), potentially active slides (PASs), relatively stable slopes (RSSs), and unmapped extremely slow slides (UESSs). These categories are based on whether landslides were previously mapped on that slope (in the CLI), if persistent scatterers (PSs) are present, and whether PSs are unstable or stable. The final inventory includes 263 mapped landslides across the peninsula, of them 67 landslides were identified as UESS. Although UESS exhibit low velocity and are relatively small (average area of 8865 m2 per slide), their presence in a highly populated area such as the Palos Verdes Peninsula could lead to destruction of infrastructure and property over the long term

    Structure mapping through spatial and temporal deformation monitoring using persistent scatterer interferometry and geographic information systems

    No full text
    Many engineering professions have adopted asset management procedures to properly construct, monitor, maintain, and support physical assets through the full service life-cycle of all assets within a network. All asset management programs, whether structural, geotechnical, or transportation, have one common goal: to achieve life-cycle performance goals (e.g., safety, preservation, economic and environmental sustainability, etc.) by cost-effectively managing physical structures. Monitoring deformation rates across an asset can be used as an indirect method of obtaining initial condition assessment information, which is vital for understanding an asset’s current life-cycle stage. Persistent scatterer interferometry (PSI), an interferometric synthetic aperture radar remote sensing stacking technique, is capable of measuring displacement rates at 1 mm/year accuracy on anthropogenic infrastructure not undergoing immediate, catastrophic failure. Geographic information systems (GIS) allows storing, processing, analyzing, and displaying geographic data. By combining PSI and GIS capabilities, this paper will illustrate how these techniques can be utilized to spatially and temporally map deformation rates on a variety of assets, and how an initial condition assessment can be made on each asset. Structure mapping can be conducted in four steps: (1) digitization of geographic location for all structures; (2) processing of radar imagery, which results in displacement rate data for all viewable structures; (3) spatially analyzing displacement rates and assigning PS points to individual structures; (4) producing maps, including both spatial and temporal information (e.g., displacement-time series analyses). This procedure will be demonstrated using 40 COSMO-SkyMed satellite radar data, 3 m resolution images acquired between July 2012 and September 2014, over urban infrastructure in San Pedro, California
    corecore