410 research outputs found

    Large-Scale Influences on Atmospheric River Induced Extreme Precipitation Events Along the Coast of Washington State

    Get PDF
    Atmospheric Rivers (ARs) are responsible for much of the precipitation along the west coast of the United States. In order to accurately predict AR events in numerical weather prediction, subseasonal and seasonal timescales, it is important to understand the large-scale meteorological influence on extreme AR events.Here, characteristics of ARs that result in an extreme precipitation event are compared to typical ARs on the coast of WashingtonState. In addition to more intense water vapor transport, notable differences in the synoptic forcing are present during extreme precipitation events that are not present during typical AR events.In particular, a negatively tilted low pressure system is positioned to the west in the Gulf of Alaska, alongside an upper level jet streak. Subseasonal and seasonal teleconnection patterns are known to influence the weather in the Pacific Northwest. The Madden JulianOscillation (MJO) is shown to be particularly important in determining the strength of precipitation associated with in AR ont he Washington coast

    WCRP Task Team for the Intercomparison of Reanalyses (TIRA): Motivation and Progress

    Get PDF
    Reanalyses have proven to be an important resource for weather and climate related research, as well as societal applications at large. Several centers have emerged to produce new atmospheric reanalyses in various forms every few years. In addition, land and ocean communities are producing disciplinary uncoupled reanalyses. Current research and development in reanalysis is directed at (1) extending the length of reanalyzed period and (2) use of coupled Earth system models for climate reanalysis. While WCRPs involvement in the reanalyses communities through its Data Advisory Council (WDAC) has been substantial, for example in organizing international conferences on reanalyses, a central team of reanalyses expertise is not in place in the WCRP structure. The differences among reanalyses and their inherent uncertainties are some of the most important questions for both users and developers of reanalyses. Therefore, a collaborative effort to systematically assess and intercompare reanalyses would be a logical progression that fills the needs of the community and contributes to the WCRP mission. The primary charge to the TIRA is to develop a reanalysis intercomparison project plan that will attain the following objectives.1)To foster understanding and estimation of uncertainties in reanalysis data by intercomparison and other means 2)To communicate new developments and best practices among the reanalyses producing centers 3)To enhance the understanding of data and assimilation issues and their impact on uncertainties, leading to improved reanalyses for climate assessment 4)To communicate the strengths and weaknesses of reanalyses, their fitness for purpose, and best practices in the use of reanalysis datasets by the scientific community. This presentation outlines the need for a task team on reanalyses, their intercomparison, the objectives of the team and progress thus far

    Reanalyses and Essential Climate Variables

    Get PDF
    Reanalyses are a potentially powerful climate data collection driven by observations but also subjected to model bias. Additionally, reanalyses can produce and use essential climate variables in a consistent method. For example, snow cover and soil moisture (among other variables) will eventually be assimilated into the reanalyses, but also provide crucial validation data. Sea surface temperature can be prescribed or assimilated in a coupled reanalysis. The strength of reanalysis lies in the ancillary data that is produced from the modeling components but not routinely observed thereby providing more complete Earth system information. The weakness in this concept is that the model derived data can be affected by model bias and may also change relative to the available observing system. Here, we will review the status of existing reanalyses and the ECVs being considered for the workshop. Purpose of Michael Bosilovich's contribution to the workshop: Michael Bosilovich will represent US reanalysis community in this international discussion of Essential Climate Variables (ECVs) and the relative nature of reanalyses to ECVs

    July 2018 Mid-Atlantic Atmospheric River and Extreme Precipitation Event Captured by MERRA-2

    Get PDF
    Despite starting off the month with hardly any precipitation, July 2018 turned out to be one of the wettest on record in the Baltimore/Washington D.C. area. Daily rainfall records were demolished as an entire month's worth of precipitation fell in a matter of days and flash flood warnings covered the region. Beginning on July 21, 2018, an atmospheric river, or a narrow stream of enhanced water vapor transport, positioned itself over the region, bringing gray skies and precipitation for days. This was captured by GMAO's Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA-2), and given the nearly 40-year record of MERRA-2, can be placed in the context of past events and the overall climate for the region during July. Not only was the multi-day rainfall out of character, but large-scale features throughout July differed from climatology and there were even bigger differences in the state of the atmosphere between the first and second halves of July 2018

    Recent Rainfall Decline in West Africa Due to Enhanced Biomass Burning and Dust Emission

    Get PDF
    Rainfall in West Africa during boreal summer is primarily controlled by the low-level southerly monsoon flow that transports moisture from the Gulf of Guinea to the region and the African Easterly Jet that modulates the convective systems. However, the role of aerosols in rainfall variability of this region, despite the large emissions of dust and black carbon in Africa, is not well-understood. Our study reveals a decline in precipitation over Southern West Africa (SWA) in the past two decades that its trend and interannual variability present an indirect relationship with the aerosols loadings. Examining the local and remote sources of aerosols, we found that the latter have a larger contribution. We have used MERRA-2 large scale atmospheric dynamics and physics data to determine the mechanisms responsible for aerosol-rainfall interactions in the region. Our results have important implications for the people and ecosystem as the increasing rates of land use change, deforestation and urbanization in the continent are expected to enhance the aerosols. This will result in an increase in the frequency and intensity of the extreme events including droughts

    El Nino-Induced Tropical Ocean/Land Energy Exchange in MERRA-2 and M2AMIP

    Get PDF
    Studies have shown the correlation and connection of surface temperatures across the globe, ocean and land, related to Tropical SSTs especially El Nino. This climate variability greatly influences regional weather and hydroclimate extremes (e.g. drought and flood). In this paper, we evaluate the relationship of temperatures across the tropical oceans and continents in MERRA-2, and also in a newly developed MERRA-2 AMIP ensemble simulation (M2AMIP). M2AMIP uses the same model and spatial resolution as MERRA-2, producing the same output diagnostics over 10 ensemble members. Composite El Nino temperature data are compared with observations to evaluate the land/sea contrast, variations and phase relationship. The temperature variations are related to surface heat fluxes and the atmospheric temperatures and transport, to identify the processes that lead to the lagged redistribution of heat in the tropics and beyond. Discernable cloud, radiation and data assimilation changes accompany the onset of El Nino affecting continental regions through the progression to and following the peak values. While the model represents these variations in general, regional strengths and weaknesses can be identified

    File Specification for M2AMIP Products

    Get PDF
    The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is an atmospheric reanalysis computed with the Goddard Earth Observing (EOS) System, Version 5.12.4 (GEOS) data assimilation system (Gelaro et al., 2017). To supplement the reanalysis, the GEOS General Circulation Model (GCM) used in MERRA-2 has been used to generate a 10-member ensemble of simulations, configured following the convention of the Atmospheric Model Intercomparison Project (AMIP; Gates et al., 1992). Each ensemble member was initialized using meteorological fields from a different date in November 1979. The AMIP simulations used the sea-surface temperature (SST) and sea-ice boundary conditions that were used in MERRA-2 (Bosilovich et al., 2016). This 10-member ensemble of AMIP simulations, denoted M2AMIP, is available for download in a group of self-describing files, which are documented in this office note. All data collections are provided on the same horizontal grid as MERRA-2. This grid has 576 points in the longitudinal direction and 361 points in the latitudinal direction, corresponding to a resolution of 0.625 degrees by 0.5 degrees. Although data collections are available at this grid, all fields are computed on a cubed-sphere grid with an approximate resolution of 50 km by 50 km and are then spatially interpolated to the latitude-longitude grid. There are no changes in the vertical grids used: variables are provided on either the native vertical grid of 72 model layers, or interpolated to 42 standard pressure levels. Unlike MERRA, no data collections are available at the vertical layer edges. More details on the grid are provided in Section 4. MERRA-2 introduced observation-based precipitation forcing for the land surface parameterization and the corresponding variable PRECTOTCORR in the MERRA-2 FLX (surface turbulent fluxes and related quantities) and LFO (land-surface forcing) collections (see Section 6; Reichle et al., 2017). While this variable is still available for M2AMIP, there was no observation-based forcing, making the value identical to the model derived precipitation, PRECTOT. Similarly, without data assimilation, the values for the analysis increments, D*DTANA, in the tendency and vertically integrated file collections are zero. The M2AMIP data are available for download online through the NASA Center for Climate Simulation (NCCS) DataPortal (https://portal.nccs.nasa.gov/datashare/gmao_m2amip/). Data are arranged in subdirectories based on ensemble member, followed by year and month. Control files that are compatible with the Grid Analysis and Display System (GrADS) are available in the ctl_daily and ctl_monthly directories for the hourly, three hourly, and monthly mean data. Control files for the monthly mean diurnal cycle can be found in the ctl_diurnal subdirectory within the directory for each individual ensemble member

    Global Energy and Water Budgets in MERRA

    Get PDF
    Reanalyses, retrospectively analyzing observations over climatological time scales, represent a merger between satellite observations and models to provide globally continuous data and have improved over several generations. Balancing the Earth s global water and energy budgets has been a focus of research for more than two decades. Models tend to their own climate while remotely sensed observations have had varying degrees of uncertainty. This study evaluates the latest NASA reanalysis, called the Modern Era Retrospective-analysis for Research and Applications (MERRA), from a global water and energy cycles perspective. MERRA was configured to provide complete budgets in its output diagnostics, including the Incremental Analysis Update (IAU), the term that represents the observations influence on the analyzed states, alongside the physical flux terms. Precipitation in reanalyses is typically sensitive to the observational analysis. For MERRA, the global mean precipitation bias and spatial variability are more comparable to merged satellite observations (GPCP and CMAP) than previous generations of reanalyses. Ocean evaporation also has a much lower value which is comparable to observed data sets. The global energy budget shows that MERRA cloud effects may be generally weak, leading to excess shortwave radiation reaching the ocean surface. Evaluating the MERRA time series of budget terms, a significant change occurs, which does not appear to be represented in observations. In 1999, the global analysis increments of water vapor changes sign from negative to positive, and primarily lead to more oceanic precipitation. This change is coincident with the beginning of AMSU radiance assimilation. Previous and current reanalyses all exhibit some sensitivity to perturbations in the observation record, and this remains a significant research topic for reanalysis development. The effect of the changing observing system is evaluated for MERRA water and energy budget terms

    The Energy Budget of the Polar Atmosphere in MERRA

    Get PDF
    Components of the atmospheric energy budget from the Modern Era Retrospective-analysis for Research and Applications (MERRA) are evaluated in polar regions for the period 1979-2005 and compared with previous estimates, in situ observations, and contemporary reanalyses. Closure of the energy budget is reflected by the analysis increments term, which results from virtual enthalpy and latent heating contributions and averages -11 W/sq m over the north polar cap and -22 W/sq m over the south polar cap. Total energy tendency and energy convergence terms from MERRA agree closely with previous study for northern high latitudes but convergence exceeds previous estimates for the south polar cap by 46 percent. Discrepancies with the Southern Hemisphere transport are largest in autumn and may be related to differences in topography with earlier reanalyses. For the Arctic, differences between MERRA and other sources in TOA and surface radiative fluxes maximize in May. These differences are concurrent with the largest discrepancies between MERRA parameterized and observed surface albedo. For May, in situ observations of the upwelling shortwave flux in the Arctic are 80 W/sq m larger than MERRA, while the MERRA downwelling longwave flux is underestimated by 12 W/sq m throughout the year. Over grounded ice sheets, the annual mean net surface energy flux in MERRA is erroneously non-zero. Contemporary reanalyses from the Climate Forecast Center (CFSR) and the Interim Re-Analyses of the European Centre for Medium Range Weather Forecasts (ERA-I) are found to have better surface parameterizations, however these collections are also found to have significant discrepancies with observed surface and TOA energy fluxes. Discrepancies among available reanalyses underscore the challenge of reproducing credible estimates of the atmospheric energy budget in polar regions

    Evaluation of the Analysis Influence on Transport in Reanalysis Regional Water Cycles

    Get PDF
    Regional water cycles of reanalyses do not follow theoretical assumptions applicable to pure simulated budgets. The data analysis changes the wind, temperature and moisture, perturbing the theoretical balance. Of course, the analysis is correcting the model forecast error, so that the state fields should be more aligned with observations. Recently, it has been reported that the moisture convergence over continental regions, even those with significant quantities of radiosonde profiles present, can produce long term values not consistent with theoretical bounds. Specifically, long averages over continents produce some regions of moisture divergence. This implies that the observational analysis leads to a source of water in the region. One such region is the Unite States Great Plains, which many radiosonde and lidar wind observations are assimilated. We will utilize a new ancillary data set from the MERRA reanalysis called the Gridded Innovations and Observations (GIO) which provides the assimilated observations on MERRA's native grid allowing more thorough consideration of their impact on regional and global climatology. Included with the GIO data are the observation minus forecast (OmF) and observation minus analysis (OmA). Using OmF and OmA, we can identify the bias of the analysis against each observing system and gain a better understanding of the observations that are controlling the regional analysis. In this study we will focus on the wind and moisture assimilation
    corecore