9 research outputs found

    Locational and Directional Dependencies of Smooth Muscle Properties in Pig Urinary Bladder

    Get PDF
    The urinary bladder is a distensible hollow muscular organ, which allows huge changes in size during absorption, storage and micturition. Pathological alterations of biomechanical properties can lead to bladder dysfunction and loss in quality of life. To understand and treat bladder diseases, the mechanisms of the healthy urinary bladder need to be determined. Thus, a series of studies focused on the detrusor muscle, a layer of urinary bladder made of smooth muscle fibers arranged in longitudinal and circumferential orientation. However, little is known about whether its active muscle properties differ depending on location and direction. This study aimed to investigate the porcine bladder for heterogeneous (six different locations) and anisotropic (longitudinal vs. circumferential) contractile properties including the force-length-(FLR) and force-velocity-relationship (FVR). Therefore, smooth muscle tissue strips with longitudinal and circumferential direction have been prepared from different bladder locations (apex dorsal, apex ventral, body dorsal, body ventral, trigone dorsal, trigone ventral). FLR and FVR have been determined by a series of isometric and isotonic contractions. Additionally, histological analyses were conducted to determine smooth muscle content and fiber orientation. Mechanical and histological examinations were carried out on 94 and 36 samples, respectively. The results showed that maximum active stress (pact) of the bladder strips was higher in the longitudinal compared to the circumferential direction. This is in line with our histological investigation showing a higher smooth muscle content in the bladder strips in the longitudinal direction. However, normalization of maximum strip force by the cross-sectional area (CSA) of smooth muscle fibers yielded similar smooth muscle maximum stresses (165.4 ± 29.6 kPa), independent of strip direction. Active muscle properties (FLR, FVR) showed no locational differences. The trigone exhibited higher passive stress (ppass) than the body. Moreover, the bladder exhibited greater ppass in the longitudinal than circumferential direction which might be attributed to its microstructure (more longitudinal arrangement of muscle fibers). This study provides a valuable dataset for the development of constitutive computational models of the healthy urinary bladder. These models are relevant from a medical standpoint, as they contribute to the basic understanding of the function of the bladder in health and disease

    The man from the biosphere – exploring the interaction between a protected cultural landscape and its residents by quantitative interviews: the case of the UNESCO Biosphere Reserve Rhön, Germany. eco.mont (Journal on Protected Mountain Areas Research)|eco.mont Vol. 3 No. 1 3 1|

    No full text
    The Rhön is a sparsely wooded central German upland and an historical cultural landscape which has been protected as a biosphere reserve since 1991. This status has induced a positive change through adapted landscape conservation and support of endogenous economic processes. Quantitative interviews with residents were carried out to determine the relevance of their relationship with the landscape. The survey shows that the biosphere reserve is a preferred rural habitat and that the local population is keenly aware of it and accepts it. The variety of uses, however, also creates difficulties and conflicts, e.g. in the high number of out-commuters. A remarkable result is the positive influence of the biosphere reserve on the sense of cohesion in the region which traditionally suffers from multiple divisions

    Influence of layer separation on the determination of stomach smooth muscle properties

    No full text
    Uniaxial tensile experiments are a standard method to determine the contractile properties of smooth muscles. Smooth muscle strips from organs of the urogenital and gastrointestinal tract contain multiple muscle layers with different muscle fiber orientations, which are frequently not separated for the experiments. During strip activation, these muscle fibers contract in deviant orientations from the force-measuring axis, affecting the biomechanical characteristics of the tissue strips. This study aimed to investigate the influence of muscle layer separation on the determination of smooth muscle properties. Smooth muscle strips, consisting of longitudinal and circumferential muscle layers (whole-muscle strips [WMS]), and smooth muscle strips, consisting of only the circumferential muscle layer (separated layer strips [SLS]), have been prepared from the fundus of the porcine stomach. Strips were mounted with muscle fibers of the circumferential layer inline with the force-measuring axis of the uniaxial testing setup. The force-length (FLR) and force-velocity relationships (FVR) were determined through a series of isometric and isotonic contractions, respectively. Muscle layer separation revealed no changes in the FLR. However, the SLS exhibited a higher maximal shortening velocity and a lower curvature factor than WMS. During WMS activation, the transversally oriented muscle fibers of the longitudinal layer shortened, resulting in a narrowing of this layer. Expecting volume constancy of muscle tissue, this narrowing leads to a lengthening of the longitudinal layer, which counteracted the shortening of the circumferential layer during isotonic contractions. Consequently, the shortening velocities of the WMS were decreased significantly. This effect was stronger at high shortening velocities

    A systemic perspective on sustainable governance of protected areas

    No full text

    Porcine Stomach Smooth Muscle Force Depends on History-Effects

    No full text
    The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm2. Maximum shortening velocity (Vmax) and curvature factor (curv) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant (P < 0.05) FD [up to 32% maximum muscle force (Fim)] and FE (up to 16% Fim) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach smooth muscle parameters including classic biomechanical muscle properties and history-dependent effects, offering the possibility for the development and validation of computational stomach models. Furthermore, this data set facilitates novel insights in gastric motility and contraction behavior based on the re-evaluation of existing contractile mechanisms. That will likely help to understand physiological functions or dysfunctions in terms of gastric accommodation and emptying

    New multi-station and multi-decadal trend data on precipitable water. Recipe to match FTIR retrievals from NDACC long-time records to radio sondes within 1mm accuracy/precision

    Full text link
    We present an original optimum strategy for retrieval of precipitable water from routine ground-based midinfrared FTS measurements performed at a number globally distributed stations within the NDACC network. The strategy utilizes FTIR retrievals which are set in a way to match standard radio sonde operations. Thereby, an unprecedented accuracy and precision for measurements of precipitable water can be demonstrated: the correlation between Zugspitze FTIR water vapor columns from a 3 months measurement campaign with total columns derived from coincident radio sondes shows a regression coefficient of R = 0.988, a bias of 0.05 mm, a standard deviation of 0.28 mm, an intercept of 0.01 mm, and a slope of 1.01. This appears to be even better than what can be achieved with state-of-the-art micro wave techniques, see e.g., Morland et al. (2006, Fig. 9 therein). Our approach is based upon a careful selection of spectral micro windows, comprising a set of both weak and strong water vapor absorption lines between 839.4 – 840.6 cm-1, 849.0 – 850.2 cm-1, and 852.0 – 853.1 cm-1, which is not contaminated by interfering absorptions of any other trace gases. From existing spectroscopic line lists, a careful selection of the best available parameter set was performed, leading to nearly perfect spectral fits without significant forward model parameter errors. To set up the FTIR water vapor profile inversion, a set of FTIR measurements and coincident radio sondes has been utilized. To eliminate/minimize mismatch in time and space, the Tobin best estimate of the state of the atmosphere principle has been applied to the radio sondes. This concept uses pairs of radio sondes launched with a 1-hour separation, and derives the gradient from the two radio sonde measurements, in order to construct a virtual PTU profile for a certain time and location. Coincident FTIR measurements of water vapor columns (two hour mean values) have then been matched to the water columns obtained by integrating the best-estimate radio sonde profiles. This match was achieved via investigating the quality of the correlation plots between the columns derived from the radio sondes and the FTIR retrievals, and iteratively tuning the regularization strength of the FTIR retrieval. The FTIR regularization matrix is based on a Tikhonov operator which allows for empirical tuning of the regularization strength via one parameter. The figures of merit for the iterative tuning have been the slope, the intercept, and the regression coefficient of the correlation. By this way an optimum retrieval setting could be found, guaranteeing a response of the FTIR retrievals to true water vapor changes, which is matched to the radio sonde operation. As first examples for utilizing this approach to derive long-term trends of precipitable water from NDACC type long-term FTIR measurements, we present trends from two time series. I.e., one retrieved from continuous FTIR measurements at the NDACC Primary Station Zugspitze, Germany (47.42 °N, 10.98 °E, 2964 m a.s.l.), which covers the time span 1995-2009, and one from the International Scientific Station of the Jungfraujoch (ISSJ, 46.5°N, 8.0°E, 3580m a.s.l., Swiss Alps), covering the time span 1984 – 2009. A detailed trend analysis of both series via the bootstrap method will be presented. In ongoing work we apply this optimum retrieval approach to historical long-time measurement series of further selected FTIR stations of the NDACC network. Thereby we will obtain unprecedented new climate data via long term trends of precipitable water at a set of globally distributed locations

    The art of omission: BRIM<sup>Nockberge</sup> – designing a Biosphere Reserve Integrated Monitoring for the Carinthian part of the Biosphere Reserve Salzburger Lungau & Kärntner Nockberge. eco.mont (Journal on Protected Mountain Areas Research)|eco.mont Vol. 5 No. 2 5 2|

    No full text
    This article provides an overview on BRIMNockberge, a research project dedicated to the development of an integrated monitoring system aimed at displaying the performance of the Carinthian part of the newly established Biosphere Reserve (BR) Salzburger Lungau & Kärntner Nockberge. Special emphasis has been placed on compactness and slenderness in this approach. Twelve indicators have been identified that are best suited to represent the social, economic and ecological development of the region, as well as the management’s performance. The whole process of developing indicators has been implemented in close collaboration and communication with local stakeholders and experts to achieve maximum public acceptance and effectiveness of the monitoring approach. A specific online database has been designed to store the collected data. It allows an easy and stringent presentation of the results. A test run was carried out within the project. Over the years, the annual collection of data will allow detecting relevant trends in the region
    corecore