8 research outputs found

    Spatially resolved transcriptomics reveals innervation-responsive functional clusters in skeletal muscle

    Get PDF
    Striated muscle is a highly organized structure composed of well-defined anatomical domains with integrated but distinct assignments. So far, the lack of a direct correlation between tissue architecture and gene expression has limited our understanding of how each unit responds to physio-pathologic contexts. Here, we show how the combined use of spatially resolved transcriptomics and immunofluorescence can bridge this gap by enabling the unbiased identification of such domains and the characterization of their response to external perturbations. Using a spatiotemporal analysis, we follow changes in the transcriptome of specific domains in muscle in a model of denervation. Furthermore, our approach enables us to identify the spatial distribution and nerve dependence of atrophic signaling pathway and polyamine metabolism to glycolytic fibers. Indeed, we demonstrate that perturbations of polyamine pathway can affect muscle function. Our dataset serves as a resource for future studies of the mechanisms underlying skeletal muscle homeostasis and innervation

    LACK OF AN ASSOCIATION BETWEEN INHERITED THROMBOPHILIC RISK FACTORS AND IDIOPATIC SUDDEN SENSORINEURAL HEARING LOSS IN ITALIAN PATIENTS

    Get PDF
    Objectives: We investigated the presence of congenital thrombophilic risk factors in a population of consecutive Italian patients affected by idiopathic sudden sensorineural hearing loss (SSNHL). Methods: We investigated 48 patients with idiopathic SSNHL for the presence of congenital thrombophilic risk factors. The factor V Leiden G1691A, the prothrombin G20210A allele, and methylenetetrahydrofolate reductase (MTHFR) C677T genotypes were investigated. Allele frequencies and genotype distribution of all factors found in patients were compared to those of 48 healthy subjects of the same ethnic background by Chi2 and odds-ratio analysis. Odds ratios and 95% confidence intervals were calculated for allele and genotype frequencies of all thrombophilia variants. Statistical significance was accepted with a p value of less than .05. We also performed the following blood tests: hemacytometric analysis including platelet count, prothrombin time, activated partial thromboplastin time, fibrinogen, erythrocyte sedimentation rate, C-reactive protein, protein S, protein C, antithrombin III, and activated protein C resistance. Results: In our series, we did not find an association between SSNHL and abnormal levels of antithrombin III, protein C, protein S, D-dimer, or fibrinogen; activated protein C resistance; or factor V G1691A, prothrombin G20210A, or MTHFR C677T mutations. Conclusions: At present, the few studies regarding genetic polymorphisms of congenital thrombophilic factors in SSNHL are not conclusive. According to our data, factor V G1691A, prothrombin G20210A, and MTHFR C677T variants should be not considered risk factors for SSNHL. Further large prospective studies are needed to provide currently lacking information and to improve our knowledge in the field before we recommend the determination of genetic polymorphism in SSNHL as routine practice

    Alternative splicing of human insulin receptor gene (INSR) in type I and type II skeletal muscle fibers of patients with myotonic dystrophy type 1 and type 2

    No full text
    Abstract INSR, one of those genes aberrantly expressed in myotonic dystrophy type 1 (DM1) and type 2 (DM2) due to a toxic RNA effect, encodes for the insulin receptor (IR). Its expression is regulated by alternative splicing generating two isoforms: IR-A, which predominates in embryonic tissue, and IR-B, which is highly expressed in adult, insulin-responsive tissues (skeletal muscle, liver, and adipose tissue). The aberrant INSR expression detected in DM1 and DM2 muscles tissues, characterized by a relative increase of IR-A versus IR-B, was pathogenically related to the insulin resistance occurring in DM patients. To assess if differences in the aberrant splicing of INSR could underlie the distinct fiber type involvement observed in DM1 and DM2 muscle tissues, we have used laser capture microdissection (LCM) and RT-PCR, comparing the alternative splicing of INSR in type I and type II muscle fibers isolated from muscle biopsies of DM1, DM2 patients and controls. In the controls, the relative amounts of IR-A and IR-B showed no obvious differences between type I and type II fibers, as in the whole muscle tissue. In DM1 and DM2 patients, both fiber types showed a similar, relative increase of IR-A versus IR-B, as also evident in the whole muscle tissue. Our data suggest that the distinct fiber type involvement in DM1 and DM2 muscle tissues would not be related to qualitative differences in the expression of INSR. LCM can represent a powerful tool to give a better understanding of the pathogenesis of myotonic dystrophies, as well as other myopathies

    GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis

    No full text
    All skeletal bones house osteogenic stem cell niches, in which mesenchymal stromal cells (MSC) provide progenitors for tissue growth and regeneration. They have been widely studied in long bones formed through endochondral ossification. Limited information is available on the composition of the osteogenic niche in flat bones (i.e., skull vault bones) that develop through direct membranous ossification. Craniosynostosis (CS) is a congenital craniofacial defect due to the excessive and premature ossification of skull vault sutures. This study aimed at analysing the expression of GLI1, AXIN2 and THY1 in the context of the human skull vault, using nonsyndromic forms of CS (NCS) as a model to test their functional implication in the aberrant osteogenic process. The expression of selected markers was studied in NCS patients’ calvarial bone specimens, to assess the in vivo location of cells, and in MSC isolated thereof. The marker expression profile was analysed during in vitro osteogenic differentiation to validate the functional implication. Our results show that GLI1 and AXIN2 are expressed in periosteal and endosteal locations within the osteogenic niche of human calvarial bones. Their expression is higher in MSC isolated from calvarial bones than in those isolated from long bones and tends to decrease upon osteogenic commitment and differentiation. In particular, AXIN2 expression was lower in cells isolated from prematurely fused sutures than in those derived from patent sutures of NCS patients. This suggests that AXIN2 could reasonably represent a marker for the stem cell population that undergoes depletion during the premature ossification process occurring in CS

    Dual inhibition of CDK12 and CDK13 uncovers actionable vulnerabilities in patient-derived ovarian cancer organoids

    Get PDF
    Abstract Background High grade serous ovarian cancer (HGSOC) is highly lethal, partly due to chemotherapy resistance and limited availability of targeted approaches. Cyclin dependent kinases 12 and 13 (CDK12/13) are promising therapeutic targets in human cancers, including HGSOC. Nevertheless, the effects of their inhibition in HGSOC and the potential synergy with other drugs are poorly known. Methods We analyzed the effects of the CDK12/13 inhibitor THZ531 in HGSOC cells and patient-derived organoids (PDOs). RNA sequencing and quantitative PCR analyses were performed to identify the genome-wide effects of short-term CDK12/13 inhibition on the transcriptome of HGSOC cells. Viability assays with HGSOC cells and PDOs were performed to assess the efficacy of THZ531 as single agent or in combination with clinically relevant drugs. Results The CDK12 and CDK13 genes are deregulated in HGSOC and their concomitant up-regulation with the oncogene MYC predicts poor prognosis. HGSOC cells and PDOs display high sensitivity to CDK12/13 inhibition, which synergizes with drugs in clinical use for HGSOC. Transcriptome analyses revealed cancer-relevant genes whose expression is repressed by dual CDK12/13 inhibition through impaired splicing. Combined treatment with THZ531 and inhibitors of pathways regulated by these cancer relevant genes (EGFR, RPTOR, ATRIP) exerted synergic effects on HGSOC PDO viability. Conclusions CDK12 and CDK13 represent valuable therapeutic targets for HGSOC. We uncovered a wide spectrum of CDK12/13 targets as potential therapeutic vulnerabilities for HGSOC. Moreover, our study indicates that CDK12/13 inhibition enhances the efficacy of approved drugs that are already in use for HGSOC or other human cancers

    The neuroprotective and neurogenic effects of neuropeptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin

    No full text
    The effects of intracerebroventricular administration of neuropeptide Y (NPY), which is believed to play an important role in neuroprotection against excitotoxicity and in the modulation of adult neurogenesis, were evaluated in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy represented by trimethyltin (TMT) intoxication. A single TMT injection (8mg/kg) causes, in the rat brain, massive neuronal death, selectively involving pyramidal neurons, accompanied by glial activation and enhanced hippocampal neurogenesis. Our data indicate that intracerebroventricular administration of exogenous NPY (at the dose of 2\u3bcg/2\u3bcl, 4 days after TMT-administration), in adult rats, exerts a protective role in regard to TMT-induced hippocampal damage and a proliferative effect on the hippocampal neurogenic niche through the up-regulation of Bcl-2, Bcl2l1, Bdnf, Sox-2, NeuroD1, Noggin and Doublecortin genes, contributing to delineate more clearly the role of NPY in in vivo neurodegenerative processes. \ua9 2012 The Authors Journal of Neurochemistry \ua9 2012 International Society for Neurochemistry

    The RNA binding protein Sam68 controls T helper 1 differentiation and anti-mycobacterial response through modulation of miR-29

    No full text
    La polarizzazione delle cellule T naive in cellule T helper 1 (Th1) producenti interferone (IFN) -γ è un evento essenziale nella risposta infiammatoria ai patogeni. Qui, identifichiamo la proteina legante l'RNA Sam68 come un modulatore specifico della differenziazione Th1. I linfociti T naive knock-out (ko) di Sam68 sono fortemente difettosi nella polarizzazione Th1 mediata da IL-12 ed esprimono bassi livelli di T-bet ed Eomes. Di conseguenza, le cellule Th1 Sam68-ko sono significativamente compromesse nella produzione di IFN-γ. Inoltre, abbiamo scoperto che Sam68 è necessario per l'induzione di una risposta Th1 infiammatoria durante l'infezione da Mycobacterium bovis Bacillus Calmette-Guerin (BCG), limitando così la disseminazione batterica nei polmoni. Meccanicamente, Sam68 si lega direttamente al microRNA miR-29, un regolatore negativo della risposta Th1 e inibisce la sua espressione durante l'infezione da BCG. Questi risultati rivelano un nuovo meccanismo post-trascrizionale richiesto per la difesa mediata da Th1 contro i patogeni intracellulari e identifica una nuova funzione per Sam68 nella regolazione della risposta immunitaria.Polarization of naive T cells into interferon (IFN)-γ-producing T helper 1 (Th1) cells is an essential event in the inflammatory response to pathogens. Herein, we identify the RNA binding protein Sam68 as a specific modulator of Th1 differentiation. Sam68-knockout (ko) naive T cells are strongly defective in IL-12-mediated Th1 polarization and express low levels of T-bet and Eomes. Consequently, Sam68-ko Th1 cells are significantly impaired in IFN-γ production. Moreover, we found that Sam68 is required for the induction of an inflammatory Th1 response during Mycobacterium bovis Bacillus Calmette–Guerin (BCG) infection, thus limiting bacterial dissemination in the lungs. Mechanistically, Sam68 directly binds to the microRNA miR-29, a negative regulator of Th1 response, and inhibits its expression during BCG infection. These findings uncover a novel post-transcriptional mechanism required for the Th1-mediated defense against intracellular pathogens and identify a new function for Sam68 in the regulation of the immune response
    corecore