447 research outputs found
Symptomatic hypogammaglobulinemia in infancy and childhood – clinical outcome and in vitro immune responses
BACKGROUND: Symptomatic hypogammaglobulinemia in infancy and childhood (SHIC), may be an early manifestation of a primary immunodeficiency or a maturational delay in the normal production of immunoglobulins (Ig). We aimed to evaluate the natural course of SHIC and correlate in vitro lymphoproliferative and secretory responses with recovery of immunoglobulin values and clinical resolution. METHODS: Children, older than 1 year of age, referred to our specialist clinic because of recurrent infections and serum immunoglobulin (Ig) levels 2 SD below the mean for age, were followed for a period of 8 years. Patient with any known familial, clinical or laboratory evidence of cellular immunodeficiency or other immunodeficiency syndromes were excluded from this cohort. Evaluation at 6- to 12-months intervals continued up to 1 year after resolution of symptoms. In a subgroup of patients, in vitro lymphocyte proliferation and Ig secretion in response to mitogens was performed. RESULTS: 32 children, 24 (75%) males, 8 (25%) females, mean age 3.4 years fulfilled the inclusion criteria. Clinical presentation: ENT infections 69%, respiratory 81%, diarrhea 12.5%. During follow-up, 17 (53%) normalized serum Ig levels and were diagnosed as transient hypogammaglobulinemia of infancy (THGI). THGI patients did not differ clinically or demographically from non-transient patients, both having a benign clinical outcome. In vitro Ig secretory responses, were lower in hypogammaglobulinemic, compared to normal children and did not normalize concomitantly with serum Ig's in THGI patients. CONCLUSIONS: The majority of children with SHIC in the first decade of life have THGI. Resolution of symptoms as well as normalization of Ig values may be delayed, but overall the clinical outcome is good and the clinical course benign
An introduction to immunology and immunopathology
In basic terms, the immune system has two lines of defense: innate immunity and adaptive immunity. Innate immunity is the first immunological, non-specific (antigen-independent) mechanism for fighting against an intruding pathogen. It is a rapid immune response, occurring within minutes or hours after aggression, that has no immunologic memory. Adaptive immunity, on the other hand, is antigen-dependent and antigen-specific; it has the capacity for memory, which enables the host to mount a more rapid and efficient immune response upon subsequent exposure to the antigen. There is a great deal of synergy between the adaptive immune system and its innate counterpart, and defects in either system can provoke illness or disease, such as autoimmune diseases, immunodeficiency disorders and hypersensitivity reactions. This article provides a practical overview of innate and adaptive immunity, and describes how these host defense mechanisms are involved in both health and illness
Primary immunodeficiency
Primary immunodeficiency disorder (PID) refers to a heterogeneous group of over 130 disorders that result from defects in immune system development and/or function. PIDs are broadly classified as disorders of adaptive immunity (i.e., T-cell, B-cell or combined immunodeficiencies) or of innate immunity (e.g., phagocyte and complement disorders). Although the clinical manifestations of PIDs are highly variable, most disorders involve at least an increased susceptibility to infection. Early diagnosis and treatment are imperative for preventing significant disease-associated morbidity and, therefore, consultation with a clinical immunologist is essential. PIDs should be suspected in patients with: recurrent sinus or ear infections or pneumonias within a 1 year period; failure to thrive; poor response to prolonged use of antibiotics; persistent thrush or skin abscesses; or a family history of PID. Patients with multiple autoimmune diseases should also be evaluated. Diagnostic testing often involves lymphocyte proliferation assays, flow cytometry, measurement of serum immunoglobulin (Ig) levels, assessment of serum specific antibody titers in response to vaccine antigens, neutrophil function assays, stimulation assays for cytokine responses, and complement studies. The treatment of PIDs is complex and generally requires both supportive and definitive strategies. Ig replacement therapy is the mainstay of therapy for B-cell disorders, and is also an important supportive treatment for many patients with combined immunodeficiency disorders. The heterogeneous group of disorders involving the T-cell arm of the adaptive system, such as severe combined immunodeficiency (SCID), require immune reconstitution as soon as possible. The treatment of innate immunodeficiency disorders varies depending on the type of defect, but may involve antifungal and antibiotic prophylaxis, cytokine replacement, vaccinations and bone marrow transplantation. This article provides a detailed overview of the major categories of PIDs and strategies for the appropriate diagnosis and management of these rare disorders
Primary vs. Secondary Antibody Deficiency: Clinical Features and Infection Outcomes of Immunoglobulin Replacement
<div><p>Secondary antibody deficiency can occur as a result of haematological malignancies or certain medications, but not much is known about the clinical and immunological features of this group of patients as a whole. Here we describe a cohort of 167 patients with primary or secondary antibody deficiencies on immunoglobulin (Ig)-replacement treatment. The demographics, causes of immunodeficiency, diagnostic delay, clinical and laboratory features, and infection frequency were analysed retrospectively. Chemotherapy for B cell lymphoma and the use of Rituximab, corticosteroids or immunosuppressive medications were the most common causes of secondary antibody deficiency in this cohort. There was no difference in diagnostic delay or bronchiectasis between primary and secondary antibody deficiency patients, and both groups experienced disorders associated with immune dysregulation. Secondary antibody deficiency patients had similar baseline levels of serum IgG, but higher IgM and IgA, and a higher frequency of switched memory B cells than primary antibody deficiency patients. Serious and non-serious infections before and after Ig-replacement were also compared in both groups. Although secondary antibody deficiency patients had more serious infections before initiation of Ig-replacement, treatment resulted in a significant reduction of serious and non-serious infections in both primary and secondary antibody deficiency patients. Patients with secondary antibody deficiency experience similar delays in diagnosis as primary antibody deficiency patients and can also benefit from immunoglobulin-replacement treatment.</p></div
Common variable immunodeficiency complicated with hemolytic uremic syndrome
Common variable immunodeficiency is a primary immunodeficiency disease characterized by reduced serum immunoglobulins and heterogeneous clinical features. Recurrent pyogenic infections of upper and lower respiratory tracts are the main clinical manifestations of common variable immunodeficiency. Hemolytic uremic syndrome is a multisystemic disorder characterized by thrombocytopenia, microangiopathic hemolytic anemia, and organ ischemia due to platelet aggregation in the arterial microvasculature. This is one of the rare cases of patients diagnosed with common variable immunodeficiency, which was complicated by hemolytic uremic syndrome
Dimensional and hierarchical models of depression using the Beck Depression Inventory-II in an Arab college student sample
Abstract Background An understanding of depressive symptomatology from the perspective of confirmatory factor analysis (CFA) could facilitate valid and interpretable comparisons across cultures. The objectives of the study were: (i) using the responses of a sample of Arab college students to the Beck Depression Inventory (BDI-II) in CFA, to compare the "goodness of fit" indices of the original dimensional three-and two-factor first-order models, and their modifications, with the corresponding hierarchical models (i.e., higher - order and bifactor models); (ii) to assess the psychometric characteristics of the BDI-II, including convergent/discriminant validity with the Hopkins Symptom Checklist (HSCL-25). Method Participants (N = 624) were Kuwaiti national college students, who completed the questionnaires in class. CFA was done by AMOS, version 16. Eleven models were compared using eight "fit" indices. Results In CFA, all the models met most "fit" criteria. While the higher-order model did not provide improved fit over the dimensional first - order factor models, the bifactor model (BFM) had the best fit indices (CMNI/DF = 1.73; GFI = 0.96; RMSEA = 0.034). All regression weights of the dimensional models were significantly different from zero (P Conclusion The broadly adequate fit of the various models indicates that they have some merit and implies that the relationship between the domains of depression probably contains hierarchical and dimensional elements. The bifactor model is emerging as the best way to account for the clinical heterogeneity of depression. The psychometric characteristics of the BDI-II lend support to our CFA results.</p
- …