182 research outputs found

    Nanoparticles and Colloids as Contributing Factors in Neurodegenerative Disease

    Get PDF
    This review explores the processes underlying the deleterious effects of the presence of insoluble or colloidal depositions within the central nervous system. These materials are chemically unreactive and can have a prolonged residence in the brain. They can be composed of mineral or proteinaceous materials of intrinsic or exogenous origin. Such nanoparticulates and colloids are associated with a range of slow-progressing neurodegenerative states. The potential common basis of toxicity of these materials is discussed. A shared feature of these disorders involves the appearance of deleterious inflammatory changes in the CNS. This may be due to extended and ineffective immune responses. Another aspect is the presence of excess levels of reactive oxygen species within the brain. In addition with their induction by inflammatory events, these may be further heightened by the presence of redox active transition metals to the large surface area afforded by nanoparticles and amphipathic micelles

    Aspects of the immune system that impact brain function.

    Get PDF
    The conditions required for effective immune responses to viral or bacterial organisms and chemicals of exogenous origin and to intrinsic molecules of abnormal configuration, are briefly outlined. This is followed by a discussion of endocrine and environmental factors that can lead to excessive continuation of immune activity and persistent elevation of inflammatory responses. Such disproportionate activity becomes increasingly pronounced with aging and some possible reasons for this are considered. The specific vulnerability of the nervous system to prolonged immune events is involved in several disorders frequently found in the aging brain. In addition of being a target for inflammation associated with neurodegenerative disease, the nervous system is also seriously impacted by systemically widespread immune disturbances since there are several means by which immune information can access the CNS. The activation of glial cells and cells of non-nervous origin that form the basis of immune responses within the brain, can occur in differing modes resulting in widely differing consequences. The events underlying the relatively frequent occurrence of derangement and hyperreactivity of the immune system are considered, and a few potential ways of addressing this common condition are described
    • …
    corecore