143 research outputs found
Liquid xenon time projection chamber for gamma rays in the MeV region: Development status
The feasibility of a large volume Liquid Xenon Time Projection Chamber (LXe-TPC) for three dimensional imaging and spectroscopy of cosmic gamma ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a nondestructive readout of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by the millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap
A Monte Carlo analysis of the liquid xenon TPC as gamma ray telescope
Extensive Monte Carlo modeling of a coded aperture x ray telescope based on a high resolution liquid xenon TPC has been performed. Results on efficiency, background reduction capability and source flux sensitivity are presented. We discuss in particular the development of a reconstruction algorithm for events with multiple interaction points. From the energy and spatial information, the kinematics of Compton scattering is used to identify and reduce background events, as well as to improve the detector response in the few MeV region. Assuming a spatial resolution of 1 mm RMS and an energy resolution of 4.5 percent FWHM at 1 MeV, the algorithm is capable of reducing by an order of magnitude the background rate expected at balloon altitude, thus significantly improving the telescope sensitivity
Properties of Pt Schottky Type Contacts On High-Resistivity CdZnTe Detectors
In this paper we present studies of the I-V characteristics of CdZnTe
detectors with Pt contacts fabricated from high-resistivity single crystals
grown by the high-pressure Brigman process. We have analyzed the experimental
I-V curves using a model that approximates the CZT detector as a system
consisting of a reversed Schottky contact in series with the bulk resistance.
Least square fits to the experimental data yield 0.78-0.79 eV for the Pt-CZT
Schottky barrier height, and <20 V for the voltage required to deplete a 2 mm
thick CZT detector. We demonstrate that at high bias the thermionic current
over the Schottky barrier, the height of which is reduced due to an interfacial
layer between the contact and CZT material, controls the leakage current of the
detectors. In many cases the dark current is not determined by the resistivity
of the bulk material, but rather the properties of the contacts; namely by the
interfacial layer between the contact and CZT material.Comment: 12 pages, 11 figure
Effects of Bulk and Surface Conductivity on the Performance of CdZnTe Pixel Detectors
We studied the effects of bulk and surface conductivity on the performance of
high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize
the difference in mechanisms of the bulk and surface conductivity as indicated
by their different temperature behaviors. In addition, the existence of a thin
(10-100 A) oxide layer on the surface of CZT, formed during the fabrication
process, affects both bulk and surface leakage currents. We demonstrate that
the measured I-V dependencies of bulk current can be explained by considering
the CZT detector as a metal-semiconductor-metal system with two back-to-back
Schottky-barrier contacts. The high surface leakage current is apparently due
to the presence of a low-resistivity surface layer that has characteristics
which differ considerably from those of the bulk material. This surface layer
has a profound effect on the charge collection efficiency in detectors with
multi-contact geometry; some fraction of the electric field lines originated on
the cathode intersects the surface areas between the pixel contacts where the
charge produced by an ionizing particle gets trapped. To overcome this effect
we place a grid of thin electrodes between the pixel contacts; when the grid is
negatively biased, the strong electric field in the gaps between the pixels
forces the electrons landing on the surface to move toward the contacts,
preventing the charge loss. We have investigated these effects by using CZT
pixel detectors indium bump bonded to a custom-built VLSI readout chip
Use of a pulsed laser to study properties of CdZnTe pixel detectors
We have investigated the utility of employing a short (<4 ns) pulsed laser with wavelength tunable between 600 - 950 nm as a tool for studying and characterizing CdZnTe detectors. By using a single mode optical fiber and simple optics, we can focus the beam to a spot size of less than 10 micrometers and generate the number of the excess carriers equivalent to a several MeV gamma-ray either at the surface or deep inside the sample. The advantages of this technique over use of a collimated X-ray or alpha particle source are strong induced signal, precise pointing, and triggering capability. As examples of using this technique, we present the results of measurements of the drift velocity, electron lifetime, and electric field line distribution inside CZT pixel detectors
New Computer System for Recognizing Micro- and Nano-Sized Objects in Semiconductors and Colloidal Solutions
In this paper it is describe a new approach developed for recognizing micro- and nano-sized objects and a method for quantitative analysis of these objects. For this purpose was developed the automated systems that can simplify and accelerate the process of nanoparticle tracks analysis under the microscope whereby engineers and scientists are able to recognize the structures of defects in semiconductor wafers, along with nanoparticles and other microscopic objects. This capability is important to both select appropriate crystals and also to apply the data to improve the production process
Development of CdZnTe pixel detectors for astrophysical applications
Over the last four years we have been developing imaging Cadmium Zinc Telluride pixel detectors optimized for astrophysical focusing hard X-ray telescopes. This application requires sensors with modest area (~2cm X 2 cm), relatively small (≾ 500µm) pixels and sub-keV energy resolution. For experiments operating in satellite orbits, low energy thresholds of ~1 - 2 keV are also desirable. In this paper we describe the desired detector performance characteristics, and report on the status of our development effort. In particular, we present results from a prototype sensor with a custom low- noise VLSI readout designed to achieve excellent spectral resolution and good imaging performance in the 2 - 100 keV band
First test results from a high-resolution CdZnTe pixel detector with VLSI readout
We are developing a CdZnTe pixel detector with a custom low- noise analog VLSI readout for use in the High-Energy Focusing Telescope balloon experiment, as well as for future space astronomy applications. The goal of the program is to achieve good energy resolution (< 1 keV FWHM at 60 keV) and low threshold in a sensor with approximately 500 micrometers pixels. We have fabricated several prototype detector assemblies with 2 mm thick, 680 by 650 micrometers pitch CdZnTe pixel sensors indium bump bonded a VLSI readout chip developed at Caltech. Each readout circuit in the 8 X 8 prototype is matched to the detector pixel size, and contains a preamplifier, shaping amplifiers, and a peak stretcher/discriminator. In the first 8 X 8 prototype, we have demonstrated the low-noise preamplifier by routing the output signals off-chip for shaping and pulse-height analysis. Pulse height spectra obtained using a ^(241)Am source, collimated to illuminate a single pixel, show excellent energy resolution of 1.1 keV FWHM for the 60 keV line at room temperature. Line profiles are approximately Gaussian and dominated by electronic noise, however a small low energy tail is evident for the 60 keV line. We obtained slightly improved resolution of 0.9 keV FWHM at 60 keV by cooling the detector to 5 degree(s)C, near the expected balloon- flight operating temperature. Pulse height spectra obtained with the collimated source positioned between pixels show the effect of signal sharing for events occurring near the boundary. We are able to model the observed spectra using a Monte-Carlo simulation that includes the effects of photon interaction, charge transport and diffusion, pixel and collimator geometry, and electronic noise. By using the model to simulate the detector response to uncollimated radiation (including the effect of finite trigger threshold for reconstruction of the total energy of multi-pixel events), we find the energy resolution to be degraded by only 10% for full-face illumination, compared to the collimated case. The small value of the degradation is due directly to the low readout noise and amplifier threshold
Use of a pulsed laser to study properties of CdZnTe pixel detectors
We have investigated the utility of employing a short (<4 ns) pulsed laser with wavelength tunable between 600 - 950 nm as a tool for studying and characterizing CdZnTe detectors. By using a single mode optical fiber and simple optics, we can focus the beam to a spot size of less than 10 micrometers and generate the number of the excess carriers equivalent to a several MeV gamma-ray either at the surface or deep inside the sample. The advantages of this technique over use of a collimated X-ray or alpha particle source are strong induced signal, precise pointing, and triggering capability. As examples of using this technique, we present the results of measurements of the drift velocity, electron lifetime, and electric field line distribution inside CZT pixel detectors
Recommended from our members
Polarization Studies of CdZnTe Detectors Using Synchrotron X-Ray Radiation.
New results on the effects of small-scale defects on the charge-carrier transport in single-crystal CdZnTe (CZT) material were produced. We conducted detailed studies of the role of Te inclusions in CZT by employing a highly collimated synchrotron x-ray radiation source available at Brookhaven's National Synchrotron Light Source (NSLS). We were able to induce polarization effects by irradiating specific areas with the detector. These measurements allowed the first quantitative comparison between areas that are free of Te inclusions and those with a relatively high concentration of inclusions. The results of these polaration studies will be reported
- …