15 research outputs found

    Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.</p> <p>Results</p> <p>We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.</p> <p>Conclusion</p> <p>Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.</p

    Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro

    No full text
    Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3′-to-5′ exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNAArg, raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S–AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1

    The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis

    No full text
    The chloroplast protein CSP41a both binds and cleaves RNA, particularly in stem-loops, and has been found associated with ribosomes. A related protein, CSP41b, co-purifies with CSP41a, ribosomes, and the plastid-encoded RNA polymerase. Here we show that Arabidopsis CSP41a and CSP41b interact in vivo, and that a csp41b null mutant becomes depleted of CSP41a in mature leaves, correlating with a pale green phenotype and reduced accumulation of the ATP synthase and cytochrome b 6 /f complexes. RNA gel blot analyses revealed up to four-fold decreases in accumulation for some chloroplast RNAs, which run-on experiments suggested could tentatively be ascribed to decreased transcription. Depletion of both CSP41a and CSP41b triggered a promoter switch whereby atpBE became predominately transcribed from its nucleus-encoded polymerase promoter as opposed to its plastid-encoded polymerase promoter. Together with published proteomic data, this suggests that CSP41a and/or CSP41b enhances transcription by the plastid-encoded polymerase. Gradient analysis of rRNAs in the mutant suggest a defect in polysome assembly or stability, suggesting that CSP41a and/or CSP41b, which are not present in polysomal fractions, stabilize ribosome assembly intermediates. Although psbA and rbcL mRNAs are normally polysome-associated in the mutant, petD-containing RNAs have diminished association, perhaps accounting for reduced accumulation of its respective multimeric complex. In conclusion, our data suggest that CSP41a and CSP41b stimulate both transcription and translation in the chloroplast

    Twisted gastrulation limits apoptosis in the distal region of the mandibular arch in mice

    Get PDF
    The mandibular arch (BA1) is critical for craniofacial development. The distal region of BA1, which gives rise to most of the mandible, is dependent upon an optimal level of bone morphogenetic protein (BMP) signaling. BMP activity is modulated in the extracellular space by BMP-binding proteins such as Twisted gastrulation (TWSG1). Twsg1(-/-) mice have a spectrum of craniofacial phenotypes, including mandibular defects that range from micrognathia to agnathia. At E9.5, the distal region of the mutant BA1 was prematurely and variably fused with loss of distal markers eHand and Msx1. Expression of proximal markers Fgf8 and Barx1 was expanded across the fused BA1. The expression of Bmp4 and Msx2 was preserved in the distal region, but shifted ventrally. While wild type embryos showed a gradient of BMP signaling with higher activity in the distal region of BA1, this gradient was disrupted and shifted ventrally in the mutants. Thus, loss of TWSG1 results in disruption of the BMP4 gradient at the level of signaling activity as well as mRNA expression. Altered distribution of BMP signaling leads to a shift in gene expression and increase in apoptosis. The extent of apoptosis may account for the variable degree of mandibular defects in Twsg1 mutants
    corecore