31 research outputs found

    Performance of the ALICE Experiment at the CERN LHC

    No full text
    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables

    Long-range angular correlations of π, K and p in p–Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    No full text
    Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon--nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3 < pTp_T < 4 GeV/c. The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |ηlab\eta_{lab}| < 0.8. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pTp_T and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2pv_2^p, is observed to be smaller than that for pions, v2πv_2^\pi, up to about pTp_T = 2 GeV/c. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2pv_2^p is found to be smaller at low pTp_T and larger at higher pTp_T than v2πv_2^\pi, with a crossing occurring at about 2 GeV. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system.Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3<pT<40.3 < p_{\rm T} < 4 GeV/cc. The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range ηlab<0.8|\eta_{\rm lab}|<0.8. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pTp_{\rm T} and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2pv_2^p, is observed to be smaller than that for pions, v2πv_2^\pi, up to about pT=2p_{\rm T} = 2 GeV/cc. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2pv_2^p is found to be smaller at low pTp_{\rm T} and larger at higher pTp_{\rm T} than v2piv_2^pi, with a crossing occurring at about 2 GeV. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system.Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3<pT<4 GeV/c . The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |ηlab|<0.8 . Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pT and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2p , is observed to be smaller than that for pions, v2π , up to about pT=2 GeV/c . To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2p is found to be smaller at low pT and larger at higher pT than v2π , with a crossing occurring at about 2 GeV/c . This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system

    Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    No full text
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV and Pb-Pb at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV collisions are presented. They help address a question if there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p-Pb at sNN=5.02 TeV and Pb-Pb at sNN=2.76 TeV collisions are presented. They help address the question of whether there is evidence for global, flowlike, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a |Δη| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}≃v2{6}≠0 which is indicative of a Bessel-Gaussian function for the v2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a |Δη|&gt;1.4 gap is placed.Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed

    Neutral pion production at midrapidity in pp and Pb-Pb collisions at sNN=2.76TeV\sqrt{s_{{\mathrm {NN}}}}= 2.76\,{\mathrm {TeV}}

    No full text
    Invariant yields of neutral pions at midrapidity in the transverse momentum range 0.6<pT<120.6 < p_{T} < 12 GeV/c measured in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV are presented for six centrality classes. The pp reference spectrum was measured in the range 0.4<pT<100.4 < p_{T} < 10 GeV/c at the same center-of-mass energy. The nuclear modification factor, RAAR_{AA}, shows a suppression of neutral pions in central Pb-Pb collisions by a factor of up to about 8108-10 for 5pT75 \lesssim p_{T} \lesssim 7 GeV/c. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations.Invariant yields of neutral pions at midrapidity in the transverse momentum range 0.6 < p_\mathrm{T}< 12\,{\mathrm \mathrm{GeV}}/ c measured in Pb–Pb collisions at sNN=2.76TeV\sqrt{s_{\mathrm {NN}}}= 2.76\,{\mathrm {\,}}\mathrm{TeV} are presented for six centrality classes. The pp reference spectrum was measured in the range 0.4<pT<10GeV/0.4 < p_\mathrm{T}< 10\,{\mathrm {\,}}\mathrm{GeV}/ c at the same center-of-mass energy. The nuclear modification factor, RAAR_\mathrm{{AA}} , shows a suppression of neutral pions in central Pb–Pb collisions by a factor of up to about 8108{-}10 for 5 \lesssim p_\mathrm{T}\lesssim 7\,{\mathrm \mathrm{GeV}}/ c. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations.Invariant yields of neutral pions at midrapidity in the transverse momentum range 0.6<pT<12GeV/c0.6 < p_{T} < 12 GeV/c measured in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV are presented for six centrality classes. The pp reference spectrum was measured in the range 0.4<pT<10GeV/c0.4 < p_{T} < 10 GeV/c at the same center-of-mass energy. The nuclear modification factor, RAAR_{\rm AA}, shows a suppression of neutral pions in central Pb-Pb collisions by a factor of up to about 8108-10 for 5pT7GeV/c5 \lesssim p_{T} \lesssim 7 GeV/c. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations

    Event-by-event mean pT{p}_{\mathbf {T}} fluctuations in pp and Pb-Pb collisions at the LHC

    No full text
    Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at √s = 0.9, 2.76 and 7 TeV, and Pb–Pb collisions at √sNN = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Non-statistical fluctuations are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb–Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb–Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb–Pb are in qualitative agreement with previous measurements in Au–Au at lower collision energies and with expectations from models that incorporate collective phenomena.Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at s\sqrt{s} = 0.9, 2.76 and 7 TeV, and Pb–Pb collisions at sNN\sqrt{s_\mathrm{NN}}   = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb–Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb–Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb–Pb are in qualitative agreement with previous measurements in Au–Au at lower collision energies and with expectations from models that incorporate collective phenomena.Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at s\sqrt{s} = 0.9, 2.76 and 7 TeV, and Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb-Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb-Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb--Pb are in qualitative agreement with previous measurements in Au-Au at lower collision energies and with expectations from models that incorporate collective phenomena

    Transverse momentum dependence of inclusive primary charged-particle production in p-Pb collisions at sNN=5.02 TeV\sqrt{s_\mathrm{{NN}}}=5.02~\text {TeV}

    No full text
    The transverse momentum (pTp_T) distribution of primary charged particles is measured at midrapidity in minimum-bias p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV with the ALICE detector at the LHC in the range 0.15 < pTp_T < 50 GeV/c. The spectra are compared to the expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for pTp_T larger than 2 GeV/c. The measurement is compared to theoretical calculations and to data in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeVThe transverse momentum ( pTp_{\mathrm T} ) distribution of primary charged particles is measured at midrapidity in minimum-bias p–Pb collisions at sNN=5.02\sqrt{s_{\mathrm {NN}}}=5.02  TeV with the ALICE detector at the LHC in the range 0.15<pT<500.15<p_{\mathrm T}<50  GeV/ cc . The spectra are compared to the expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for pTp_{\mathrm T} larger than 2 GeV/ cc , with a weak indication of a Cronin-like enhancement for pTp_\mathrm {T} around 4  GeV ⁣/c\mathrm {GeV}\!/c . The measurement is compared to theoretical calculations and to data in Pb–Pb collisions at sNN=2.76\sqrt{s_{\mathrm {NN}}}=2.76  TeV.The transverse momentum (pTp_{\mathrm T}) distribution of primary charged particles is measured at midrapidity in minimum-bias p-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV with the ALICE detector at the LHC in the range 0.15<pT<500.15<p_{\mathrm T}<50 GeV/cc. The spectra are compared to the expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for pTp_{\mathrm T} larger than 2 GeV/cc, with a weak indication of a Cronin-like enhancement for pTp_{\rm T} around 4 GeV/cc. The measurement is compared to theoretical calculations and to data in Pb-Pb collisions at sNN=2.76\sqrt{s_{\mathrm{NN}}}=2.76 TeV

    Measurement of visible cross sections in proton-lead collisions at sqrt(sNN) = 5.02 TeV in van der Meer scans with the ALICE detector

    No full text
    In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair sqrt(sNN) = 5.02 TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage 4.6 < eta< 4.9, -3.3 < eta < -3.0 and 2.8 < eta < 5.1, -3.7 < eta < -1.7, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-proton data samples, and to indirectly measure the cross section for a third, configuration-independent, reference process, based on neutron detection by the Zero Degree Calorimeters
    corecore