13 research outputs found

    Dataset Discovery in Data Lakes

    Get PDF
    Data analytics stands to benefit from the increasing availability of datasets that are held without their conceptual relationships being explicitly known. When collected, these datasets form a data lake from which, by processes like data wrangling, specific target datasets can be constructed that enable value-adding analytics. Given the potential vastness of such data lakes, the issue arises of how to pull out of the lake those datasets that might contribute to wrangling out a given target. We refer to this as the problem of dataset discovery in data lakes and this paper contributes an effective and efficient solution to it. Our approach uses features of the values in a dataset to construct hash-based indexes that map those features into a uniform distance space. This makes it possible to define similarity distances between features and to take those distances as measurements of relatedness w.r.t. a target table. Given the latter (and exemplar tuples), our approach returns the most related tables in the lake. We provide a detailed description of the approach and report on empirical results for two forms of relatedness (unionability and joinability) comparing them with prior work, where pertinent, and showing significant improvements in all of precision, recall, target coverage, indexing and discovery times

    Active entailment encoding for explanation tree construction using parsimonious generation of hard negatives

    Full text link
    Entailment trees have been proposed to simulate the human reasoning process of explanation generation in the context of open--domain textual question answering. However, in practice, manually constructing these explanation trees proves a laborious process that requires active human involvement. Given the complexity of capturing the line of reasoning from question to the answer or from claim to premises, the issue arises of how to assist the user in efficiently constructing multi--level entailment trees given a large set of available facts. In this paper, we frame the construction of entailment trees as a sequence of active premise selection steps, i.e., for each intermediate node in an explanation tree, the expert needs to annotate positive and negative examples of premise facts from a large candidate list. We then iteratively fine--tune pre--trained Transformer models with the resulting positive and tightly controlled negative samples and aim to balance the encoding of semantic relationships and explanatory entailment relationships. Experimental evaluation confirms the measurable efficiency gains of the proposed active fine--tuning method in facilitating entailment trees construction: up to 20\% improvement in explanatory premise selection when compared against several alternatives

    Data context informed data wrangling

    Get PDF
    The process of preparing potentially large and complex data sets for further analysis or manual examination is often called data wrangling. In classical warehousing environments, the steps in such a process have been carried out using Extract-Transform-Load platforms, with significant manual involvement in specifying, configuring or tuning many of them. Cost-effective data wrangling processes need to ensure that data wrangling steps benefit from automation wherever possible. In this paper, we define a methodology to fully automate an end-to-end data wrangling process incorporating data context, which associates portions of a target schema with potentially spurious extensional data of types that are commonly available. Instance-based evidence together with data profiling paves the way to inform automation in several steps within the wrangling process, specifically, matching, mapping validation, value format transformation, and data repair. The approach is evaluated with real estate data showing substantial improvements in the results of automated wrangling
    corecore