5,981 research outputs found

    Split energy cascade in turbulent thin fluid layers

    Get PDF
    We discuss the phenomenology of the split energy cascade in a three-dimensional thin fluid layer by mean of high resolution numerical simulations of the Navier-Stokes equations. We observe the presence of both an inverse energy cascade at large scales, as predicted for two-dimensional turbu- lence, and of a direct energy cascade at small scales, as in three-dimensional turbulence. The inverse energy cascade is associated with a direct cascade of enstrophy in the intermediate range of scales. Notably, we find that the inverse cascade of energy in this system is not a pure 2D phenomenon, as the coupling with the 3D velocity field is necessary to guarantee the constancy of fluxes

    Condensate in quasi two-dimensional turbulence

    Get PDF
    We investigate the process of formation of large-scale structures in a turbulent flow confined in a thin layer. By means of direct numerical simulations of the Navier-Stokes equations, forced at an intermediate scale, we obtain a split of the energy cascade in which one fraction of the input goes to small scales generating the three-dimensional direct cascade. The remaining energy flows to large scales producing the inverse cascade which eventually causes the formation of a quasi two-dimensional condensed state at the largest horizontal scale. Our results shows that the connection between the two actors of the split energy cascade in thin layers is tighter than what was established before: the small scale three-dimensional turbulence acts as an effective viscosity and dissipates the large-scale energy thus providing a viscosity-independent mechanism for arresting the growth of the condensate. This scenario is supported by quantitative predictions of the saturation energy in the condensate

    Predictability of the energy cascade in 2D turbulence

    Get PDF
    The predictability problem in the inverse energy cascade of two-dimensional turbulence is addressed by means of direct numerical simulations. The growth rate as a function of the error level is determined by means of a finite size extension of the Lyapunov exponent. For error within the inertial range, the linear growth of the error energy, predicted by dimensional argument, is verified with great accuracy. Our numerical findings are in close agreement with the result of TFM closure approximation.Comment: 3 pages, 3 figure

    Energy dissipation statistics in a shell model of turbulence

    Full text link
    The Reynolds number dependence of the statistics of energy dissipation is investigated in a shell model of fully developed turbulence. The results are in agreement with a model which accounts for fluctuations of the dissipative scale with the intensity of energy dissipation. It is shown that the assumption of a fixed dissipative scale leads to a different scaling with Reynolds which is not compatible with numerical results.Comment: 3 pages RevTeX, 4 PostScript figures, tarred, gzippe

    Introduction to chaos and diffusion

    Full text link
    This contribution is relative to the opening lectures of the ISSAOS 2001 summer school and it has the aim to provide the reader with some concepts and techniques concerning chaotic dynamics and transport processes in fluids. Our intention is twofold: to give a self-consistent introduction to chaos and diffusion, and to offer a guide for the reading of the rest of this volume.Comment: 39 page

    An update on the double cascade scenario in two-dimensional turbulence

    Get PDF
    Statistical features of homogeneous, isotropic, two-dimensional turbulence is discussed on the basis of a set of direct numerical simulations up to the unprecedented resolution 32768232768^2. By forcing the system at intermediate scales, narrow but clear inertial ranges develop both for the inverse and for direct cascades where the two Kolmogorov laws for structure functions are, for the first time, simultaneously observed. The inverse cascade spectrum is found to be consistent with Kolmogorov-Kraichnan prediction and is robust with respect the presence of an enstrophy flux. The direct cascade is found to be more sensible to finite size effects: the exponent of the spectrum has a correction with respect theoretical prediction which vanishes by increasing the resolution
    corecore