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Predictability of the inverse energy cascade in 2D turbulence
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and INFM Sezione di Torino Universita`, Torino, Italy
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The predictability problem in the inverse energy cascade of two-dimensional turbulence is
addressed by means of high resolution direct numerical simulations. The growth rate as a function
of the error level is determined by means of a finite size extension of the Lyapunov exponent. For
errors within the inertial range, the linear growth of the error energy, predicted by dimensional
argument, is verified with great accuracy. Our numerical findings quantitatively confirm the results
of the classical TFM closure approximation. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1350877#

BRIEF COMMUNICATIONS
The purpose of this Brief Communications section is to present important research results of more limited scope than regular
articles appearing in Physics of Fluids. Submission of material of a peripheral or cursory nature is strongly discouraged. Brief
Communications cannot exceed four printed pages in length, including space allowed for title, figures, tables, references, and an
abstract limited to about 100 words.
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Unpredictability is an essential property of turbule
flows. Turbulence is characterized by a large number of
grees of freedom interacting with nonlinear dynamics. Th
turbulence is chaotic~and hence unpredictable!, but the stan-
dard approach of dynamical system theory is not sufficien
characterize predictability in turbulence.1

In fully developed turbulence, the maximum Lyapun
exponent diverges, with the Reynolds number thus be
very large for typical turbulent flows.2 Nevertheless, a large
value of the Lyapunov exponent does not imply autom
cally short time predictability. A familiar example is the a
mosphere dynamics: convective motions in the atmosph
make the small scale features unpredictable after 1 h or less,
but large scale dynamics can be predicted for several day
it is demonstrated by weather forecasting. This effect, wh
can be called ‘‘strong chaos with weak butterfly effect
arises in systems possessing many characteristic scale
times. From this point of view, turbulence probably rep
sents the example most extensively studied.

The first attempts at the study of predictability in turb
lence date back to the pioneering work of Lorenz1 and to the
Kraichnan and Leith papers.3,4 On the basis of closure ap
proximations, it was possible to obtain quantitative pred
tions on the evolution of the error in different turbulent sit
ations, both in two and three dimensions.

A more recent approach to the problem is based on
namical system theory. Chaotic properties and predictab
of turbulent flow have been extensively investigated in s
plified models of turbulence, called shell models, with p
ticular emphasis on the relations with intermittency.5–9 Be-
cause predictability experiments in fully develop
turbulence are numerically rather expensive, a similar st
1070-6631/2001/13(4)/1060/3/$18.00 106
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on direct numerical simulations of Navier–Stokes equatio
is still lacking.

In this communication we address the predictabil
problem for two-dimensional turbulence by means of hi
resolution direct numerical simulations. Turbulence is gen
ated in the inverse cascade regime where a robust en
cascade is observed.10 The absence of intermittency corre
tions makes the problem simpler than in the thre
dimensional case: velocity statistics~energy spectrum, struc
ture functions! are found to be in close agreement with se
similar theory a` la Kolmogorov.

The model equation is the two-dimensional Navie
Stokes equation written for the scalar vorticityv(r ,t)
52Dc(r ,t) with generalized dissipation and linear frictio

] tv1J~v,c!5~21!p11npDpv2av2 f , ~1!

whereJ represents the Jacobian with the stream functionc
and the velocity isu5(]yc,2]xc). p is the order of the
dissipation;p51 for ordinary dissipation,p.1 for hyper-
viscosity. As it is customary in numerical simulations, w
use hyperviscous dissipation (p58) in order to extend the
inertial range. Although this can affect the small scale fe
tures of the vorticity field,11 in our simulations dissipation is
not involved in the cascade and has simply the role of
moving entrophy at small scales. The friction term in~1!
removes energy at large scales: it is necessary in orde
avoid Bose–Einstein condensation on the gravest mo12

and to obtain a stationary state. Energy is injected into
system by a random forcingd-correlated in time which is
active on a shell of wavenumbers aroundkf only. Numerical
integration of~1! is performed by a standard pseudo-spec
0 © 2001 American Institute of Physics

 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html
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code fully dealiased with second-order Adams–Bashfo
time stepping on a doubly periodic square domain with re
lution N51024.

Stationary turbulent flow is obtained after a very lo
simulation starting from a zero initial vorticity field. At sta
tionarity one observes a wide inertial range with a well d
veloped Kolmogorov energy spectrumE(k)5Ce2/3k25/3

~Fig. 1!. Structure functions in physical space are found
agreement with the self-similar Kolmogorov theory.10

Starting from a configuration of the velocity fiel
u1(r ,0) in the stationary state, one generates a second~per-
turbed! configuration

u2~r ,0!5u1~r ,0!1A2du~r ,0!, ~2!

in which the initial errordu(r ,0) is very small~the factorA2
is only for normalization convenience!. The two configura-
tions are integrated in time according to~1! and the evolution
of the errordu(r ,t) is computed according to~2!. Of course,
because we are interested in studying the error growth
duced by the turbulent dynamics, we use the same realiza
of random forcing in both simulations.

From ~2! one defines the error energy and the error
ergy spectrum as4,13

ED~ t !5E
0

`

ED~k,t ! dk5
1

2E udu~r ,t !u2d2r . ~3!

Normalization in~2! ensures thatED(k,t)→E(k) for un-
correlated fields~i.e., for t→`). Assuming that the initial
error can be considered infinitesimal, the magnitude of
difference field starts growing exponentially andED(t)
.ED(0)exp(2lt) wherel is the maximum Lyapunov expo
nent of the system.14 The error growth in this stage is con
fined at the faster scales in the inertial range, correspon
in our model to the scales close to the forcing wavenum
kf , while at larger scales the two fields remain correla
~see Fig. 1!. At larger times, whenED(kf ,t) becomes com-
parable withE(kf), the exponential growth terminates, b
cause the two fields are completely decorrelated at sm
scales (k<kf). The error growth continues at larger scales
the inertial range, where the two fields are still correlat
and an algebraic regime sets in. The dimensional predic

FIG. 1. Stationary energy spectrumE(k) ~thick line! and error spectrum
ED(k,t) at time t50.1,0.2,0.4,0.8,1.6.kf5320 is the forcing wavenumber
In the inset we plot the compensated spectrume22/3k5/3E(k).
Downloaded 20 Mar 2001 to 192.84.137.11. Redistribution subject to
h
-

-

n-
on

-

e

ng
r

d

ll

,
n

proposed by Lorenz1 assumes that the time it takes for th
error to induce a complete uncertainty at wavenumberk is
proportional to the characteristic time at that scale,t}t(k).
Within the Kolmogorov framework,t(k).e21/3k22/3. Re-
verting this dimensional expression one can say that at fi
time the error have reached the scalekE(t).e21/2t23/2. At
larger scales the error is still very small in comparison w
the typical energy, while at smaller scale the two fields
completely decorrelated. Thus at each time we have a c
acteristic scalekE(t) which divide uncorrelated scales from
correlated ones:

ED~k,t !5H 0 if k,kE~ t !,

E~k! if k.kE~ t !.
~4!

By inserting~4! in ~3!, using the Kolmogorov spectrum fo
E(k) and assuming the dimensional expression forkE(t) one
ends with the prediction1,9

ED~ t !5Get. ~5!

The numerical constantG in ~5! can be obtained only by
repeating the argument more formally within a closu
framework.3,4,15The physical meaning ofG is the ratio of the

FIG. 2. Average error energŷED(t)& growth. Dashed line represents clo
sure prediction~5!, dotted line is the saturation valueE. The initial expo-
nential growth is emphasized by the lin-log plot in the inset.

FIG. 3. Finite size Lyapunov exponentl(d) as a function of velocity un-
certainty d. The asymptotic constant value ford→0 is the maximum
Lyapunov exponent of the turbulent flow. Dashed line represent predic
~7!. In the inset we show in the compensated plotl(d)d2/e. The line rep-
resent the fit to the constantA.3.9.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html
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rate of uncorrelated energy production to the rate of ene
injected by the forcing and transferred to large scalese.

In Fig. 2 we plot the time evolution of the error energ
^ED(t)& obtained from direct numerical simulations ave
aged over 20 realizations. The exponential regime is cle
visible at small time, while the linear regime~5! is barely
observable, making the precise determination ofG difficult.

The dimensional predictability argument given abo
can be rephrased in a language more close to dynamical
tems by introducing the finite size Lyapunov expone
~FSLE! analysis. FSLE is a generalization of the Lyapun
exponent to finite size errors, which was recently propo
for the analysis of systems with many characteristic scal8

In a nutshell, one computes the ‘‘error doubling time
Tr(d), i.e., the time it takes for an error of sized to grow a
factor r ~for r 52 we have actually a doubling time!. The
FSLE is defined in terms of the average doubling time a

l~d!5
1

^Tr~d!&
lnr . ~6!

It is easy to show that definition~6! reduces to the standar
Lyapunov exponentl in the infinitesimal error limitd→0.8

For finite error, the FSLE measures the effective er
growth rate at error sized. Let us remark that taking aver
ages at fixed time, as in~5!, is not the same as averaging
fixed error size, as in~6!. This is particularly true in the cas
of intermittent systems, in which strong fluctuations of t
error in different realizations can hide scaling laws like~5!.8

From a numerical point of view, the computation ofl(d) is
not more expensive than the computation of the Lyapu
exponent with a standard algorithm.

The same dimensional argument leading to~5! can be
used for predicting the behavior of the FSLE in the inert
range. Takingd5AED as error, one easily obtains

l~d!5Aed22 . ~7!

The constantA, which again is not determined by dimen
sional arguments, relates the energy flux in the cascade t
rate of error growth. In the absence of intermittency and
r .1, the two constants in~5! and ~7! are related byA5(r
21)/logr G.

The scaling~7!, which can be shown to be unaffected b
possible intermittency corrections~as in 3D turbulence8!, is
valid within the inertial rangeu(kf),d,U whereu(kf) is
the typical velocity fluctuation at forcing wavenumber a
U.A2E is the typical large scale velocity. At large erro
d.U, we expect error saturation,ED→E and thusl(d)
→0.

Figure 3 shows the FSLE computed from our simu
tions. For small errorsd,u(kf) @corresponding to an erro
spectrumED(kf ,t)!E(kf)] we observe the convergence
l(d) to the leading Lyapunov exponent. Its value is ess
tially the inverse of the smallest characteristic time in t
system and represents the growth rate of the most uns
features. At largerd.1022 we clearly see the transition t
the inertial range scaling~7!. At further larged.U.0.1,
l(d) falls down to zero in correspondence of error satu
tion.
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In order to emphasize scaling~7!, in Fig. 3 we also show
the compensation ofl(d) with ed22. Prediction~7! is veri-
fied with very high accuracy which allows us to determi
the value of A.3.960.1. With the present value ofr
.1.12, this corresponds to a valueG.4.1. The physical
picture we obtain is that the creation of uncorrelated ene
in the inertial range due to chaotic dynamics is about fo
times faster than the energy transfer rate.

Our numerical result is in remarkable agreement with
old prediction obtained within the test field model closur4

which givesG54.19. At least from the point of view o
predictability, two-dimensional turbulence thus seems to
very well captured by low-order closure scheme. As a c
sequence we can exclude, on the basis of our numerical fi
ings, the existence of intermittency effects in the inverse c
cade of error. This is a result which is probably of mo
general interest than the specific problem discussed in
communication.
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