4 research outputs found

    Prediction of Drug-Induced Nephrotoxicity with a Hydroxyl Radical and Caspase Light-Up Dual-Signal Nanoprobe

    No full text
    The development of well-designed nanoprobes for specific imaging of multiple biomarkers in renal cells will afford beneficial information related to the transmutation process of drug-induced kidney injury (DIKI). However, the most reported nanoprobes for DIKI detection were dependent on single-signal output and lack of kidney targeting. In this work, we reported a renal cell targeting and dual-signal nanoprobe by encapsulating Brite 670 and Dabcyl-KFF­F­D­E­VDK-FAM into a low molecular weight chitosan nanoparticle. Confocal fluorescence imaging results demonstrated that the nanoprobe could visualize the upregulation of hydroxyl radical in early stage and activation of caspase-3 in late stage of DIKI at both the renal cell and tissue level. In a mouse DIKI model, the positive time of 8 h using nanoprobe imaging was superior to that of 72 h for serum creatinine or blood urea nitrogen, 16 h for cystatin-C, and 24 h for kidney injury molecule-1 with conventional methods. These results demonstrated that the nanoprobe may be a promising tool for effective early prediction and discriminative imaging of DIKI

    Prediction of Drug-Induced Nephrotoxicity with a Hydroxyl Radical and Caspase Light-Up Dual-Signal Nanoprobe

    No full text
    The development of well-designed nanoprobes for specific imaging of multiple biomarkers in renal cells will afford beneficial information related to the transmutation process of drug-induced kidney injury (DIKI). However, the most reported nanoprobes for DIKI detection were dependent on single-signal output and lack of kidney targeting. In this work, we reported a renal cell targeting and dual-signal nanoprobe by encapsulating Brite 670 and Dabcyl-KFF­F­D­E­VDK-FAM into a low molecular weight chitosan nanoparticle. Confocal fluorescence imaging results demonstrated that the nanoprobe could visualize the upregulation of hydroxyl radical in early stage and activation of caspase-3 in late stage of DIKI at both the renal cell and tissue level. In a mouse DIKI model, the positive time of 8 h using nanoprobe imaging was superior to that of 72 h for serum creatinine or blood urea nitrogen, 16 h for cystatin-C, and 24 h for kidney injury molecule-1 with conventional methods. These results demonstrated that the nanoprobe may be a promising tool for effective early prediction and discriminative imaging of DIKI

    Synthesis of Natural Acylphloroglucinol-Based Antifungal Compounds against <i>Cryptococcus</i> Species

    No full text
    Thirty-three natural-product-based acylphloroglucinol derivatives were synthesized to identify antifungal compounds against <i>Cryptococcus</i> spp. that cause the life-threatening disseminated cryptococcosis. In vitro antifungal testing showed that 17 compounds were active against <i>C. neoformans</i> ATCC 90113, <i>C. neoformans</i> H99, and <i>C. gattii</i> ATCC 32609, with minimum inhibitory concentrations (MICs) in the range 1.0–16.7 μg/mL. Analysis of the structure and antifungal activity of these compounds indicated that the 2,4-diacyl- and 2-acyl-4-alkylphloroglucinols were more active than <i>O</i>-alkyl-acylphloroglucinols. The most promising compound found was 2-methyl-1-(2,4,6-trihydroxy-3-(4-isopropylbenzyl)­phenyl)­propan-1-one (<b>11j</b>), which exhibited potent antifungal activity (MICs, 1.5–2.1 μg/mL) and low cytotoxicity against the mammalian Vero and LLC-PK1 cell lines (IC<sub>50</sub> values >50 μg/mL). This compound may serve as a template for further synthesis of new analogues with improved antifungal activity. The findings of the present work may contribute to future antifungal discovery toward pharmaceutical development of new treatments for cryptococcosis

    Antibacterial Prenylated Acylphloroglucinols from <i>Psorothamnus fremontii</i>

    No full text
    Psorothatins A–C (<b>1</b>–<b>3</b>), three antibacterial prenylated acylphloroglucinol derivatives, were isolated from the native American plant <i>Psorothamnus fremontii</i>. They feature an unusual α,β-epoxyketone functionality and a β-hydroxy-α,β-unsaturated ketone structural moiety. The latter forms a pseudo-six-membered heterocyclic ring due to strong intramolecular hydrogen bonding, as indicated by the long-range proton–carbon correlations in the NMR experiments. Psorothatin C (<b>3</b>) was the most active compound against methicillin-resistant <i>Staphylococcus aureus</i> and vancomycin-resistant <i>Enterococcus faecium</i>, with IC<sub>50</sub> values in the range 1.4–8.8 μg/mL. The first total synthesis of <b>3</b> described herein permits future access to structural analogues with potentially improved antibacterial activities
    corecore