4 research outputs found
A GPU-accelerated package for simulation of flow in nanoporous source rocks with many-body dissipative particle dynamics
Mesoscopic simulations of hydrocarbon flow in source shales are challenging,
in part due to the heterogeneous shale pores with sizes ranging from a few
nanometers to a few micrometers. Additionally, the sub-continuum fluid-fluid
and fluid-solid interactions in nano- to micro-scale shale pores, which are
physically and chemically sophisticated, must be captured. To address those
challenges, we present a GPU-accelerated package for simulation of flow in
nano- to micro-pore networks with a many-body dissipative particle dynamics
(mDPD) mesoscale model. Based on a fully distributed parallel paradigm, the
code offloads all intensive workloads on GPUs. Other advancements, such as
smart particle packing and no-slip boundary condition in complex pore
geometries, are also implemented for the construction and the simulation of the
realistic shale pores from 3D nanometer-resolution stack images. Our code is
validated for accuracy and compared against the CPU counterpart for speedup. In
our benchmark tests, the code delivers nearly perfect strong scaling and weak
scaling (with up to 512 million particles) on up to 512 K20X GPUs on Oak Ridge
National Laboratory's (ORNL) Titan supercomputer. Moreover, a single-GPU
benchmark on ORNL's SummitDev and IBM's AC922 suggests that the host-to-device
NVLink can boost performance over PCIe by a remarkable 40\%. Lastly, we
demonstrate, through a flow simulation in realistic shale pores, that the CPU
counterpart requires 840 Power9 cores to rival the performance delivered by our
package with four V100 GPUs on ORNL's Summit architecture. This simulation
package enables quick-turnaround and high-throughput mesoscopic numerical
simulations for investigating complex flow phenomena in nano- to micro-porous
rocks with realistic pore geometries
GPU-accelerated red blood cells simulations with transport dissipative particle dynamics
Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 cores within a single node, and a weak scaling efficiency of 91% across 256 nodes. The program enables quick-turnaround and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena and disorders