15 research outputs found

    The Effect of Dietary Tartrazine on Brain Dopamine and the Behavioral Symptoms of Attention Deficit Hyperactivity Disorder

    Get PDF
    Attention Deficit Hyperactivity Disorder is a neurodevelopmental disorder correlated with a decrease in brain dopamine and an increase in behavioral symptoms of hyperactivity and impulsivity. This experiment explored how tartrazine (Yellow #5) impacts these symptoms. After tartrazine administration to Spontaneously Hypertensive Rats (SHR), dopamine concentrations in regions of brain tissue were measured using Enzyme-Linked Immunosorbent Assay analysis. Behavioral testing with a T-maze and open field test measured impulsivity and hyperactivity, respectively. Results indicate that dietary tartrazine increases hyperactive behaviors in the SHR. However, results do not indicate a relationship between dietary tartrazine and brain dopamine. No conclusions regarding the relationship between dietary tartrazine and impulsivity were drawn

    Intracellular delivery of oncolytic viruses with engineered Salmonella causes viral replication and cell death

    No full text
    Summary: As therapies, oncolytic viruses regress tumors and have the potential to induce antitumor immune responses that clear hard-to-treat and late-stage cancers. Despite this promise, clearance from the blood prevents treatment of internal solid tumors. To address this issue, we developed virus-delivering Salmonella (VDS) to carry oncolytic viruses into cancer cells. The VDS strain contains the PsseJ-lysE delivery circuit and has deletions in four homologous recombination genes (ΔrecB, ΔsbcB, ΔsbcCD, and ΔrecF) to preserve essential hairpins in the viral genome required for replication and infectivity. VDS delivered the genome for minute virus of mice (MVMp) to multiple cancers, including breast, pancreatic, and osteosarcoma. Viral delivery produced functional viral particles that are cytotoxic and infective to neighboring cells. The release of mature virions initiated new rounds of infection and amplified the infection. Using Salmonella for delivery will circumvent the limitations of oncolytic viruses and will provide a new therapy for many cancers

    Centering Digital Health Equity During Technology Innovation: Protocol for a Comprehensive Scoping Review of Evidence-Based Tools and Approaches

    No full text
    BackgroundIn the rush to develop health technologies for the COVID-19 pandemic, the unintended consequence of digital health inequity or the inability of priority communities to access, use, and receive equal benefits from digital health technologies was not well examined. ObjectiveThis scoping review will examine tools and approaches that can be used during digital technology innovation to improve equitable inclusion of priority communities in the development of digital health technologies. The results from this study will provide actionable insights for professionals in health care, health informatics, digital health, and technology development to proactively center equity during innovation. MethodsBased on the Arksey and O’Malley framework, this scoping review will consider priority communities’ equitable involvement in digital technology innovation. Bibliographic databases in health, medicine, computing, and information sciences will be searched. Retrieved citations will be double screened against the inclusion and exclusion criteria using Covidence (Veritas Health Innovation). Data will be charted using a tailored extraction tool and mapped to a digital health innovation pathway defined by the Centre for eHealth Research roadmap for eHealth technologies. An accompanying narrative synthesis will describe the outcomes in relation to the review’s objectives. ResultsThis scoping review is currently in progress. The search of databases and other sources returned a total of 4868 records. After the initial screening of titles and abstracts, 426 studies are undergoing dual full-text review. We are aiming to complete the full-text review stage by May 30, 2024, data extraction in October 2024, and subsequent synthesis in December 2024. Funding was received on October 1, 2023, from the Centre for Health Equity Incubator Grant Scheme, University of Melbourne, Australia. ConclusionsThis paper will identify and recommend a series of validated tools and approaches that can be used by health care stakeholders and IT developers to produce equitable digital health technology across the Centre for eHealth Research roadmap. Identified evidence gaps, possible implications, and further research will be discussed. International Registered Report Identifier (IRRID)DERR1-10.2196/5385

    Transcription-controlled gene therapy against tumor angiogenesis

    No full text
    A major drawback of current approaches to antiangiogenic gene therapy is the lack of tissue-specific targeting. The aim of this work was to trigger endothelial cell–specific apoptosis, using adenoviral vector–mediated delivery of a chimeric death receptor derived from the modified endothelium-specific pre-proendothelin-1 (PPE-1) promoter. In the present study, we constructed an adenovirus-based vector that targets tumor angiogenesis. Transcriptional control was achieved by use of a modified endothelium-specific promoter. Expression of a chimeric death receptor, composed of Fas and TNF receptor 1, resulted in specific apoptosis of endothelial cells in vitro and sensitization of cells to the proapoptotic effect of TNF-α. The antitumoral activity of the vectors was assayed in two mouse models. In the model of B16 melanoma, a single systemic injection of virus to the tail vein caused growth retardation of tumor and reduction of tumor mass with central tumor necrosis. When the Lewis lung carcinoma lung-metastasis model was applied, i.v. injection of vector resulted in reduction of lung-metastasis mass, via an antiangiogenic mechanism. Moreover, by application of the PPE-1–based transcriptional control, a humoral immune response against the transgene was avoided. Collectively, these data provide evidence that transcriptionally controlled, angiogenesis-targeted gene therapy is feasible
    corecore