72 research outputs found

    Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus in Patients with Parkinson's Disease: Effects on Diadochokinetic Rate

    Get PDF
    The hypokinetic dysarthria observed in Parkinson's disease (PD) affects the range, speed, and accuracy of articulatory gestures in patients, reducing the perceived quality of speech acoustic output in continuous speech. Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) and of the caudal zona incerta (cZi-DBS) are current surgical treatment options for PD. This study aimed at investigating the outcome of STN-DBS (7 patients) and cZi-DBS (7 patients) in two articulatory diadochokinesis tasks (AMR and SMR) using measurements of articulation rate and quality of the plosive consonants (using the percent measurable VOT metric). The results indicate that patients receiving STN-DBS increased in articulation rate in the Stim-ON condition in the AMR task only, with no effect on production quality. Patients receiving cZi-DBS decreased in articulation rate in the Stim-ON condition and further showed a reduction in production quality. The data therefore suggest that cZi-DBS is more detrimental for extended articulatory movements than STN-DBS

    Orthopedic surgery in ancient Egypt

    No full text
    BACKGROUND: Ancient Egypt might be considered the cradle of medicine. The modern literature is, however, sometimes rather too enthusiastic regarding the procedures that are attributed an Egyptian origin. I briefly present and analyze the claims regarding orthopedic surgery in Egypt, what was actually done by the Egyptians, and what may have been incorrectly ascribed to them. METHODS: I reviewed the original sources and also the modern literature regarding surgery in ancient Egypt, concentrating especially on orthopedic surgery. RESULTS: As is well known, both literary sources and the archaeological/osteological material bear witness to treatment of various fractures. The Egyptian painting, often claimed to depict the reduction of a dislocated shoulder according to Kocher's method, is, however, open to interpretation. Therapeutic amputations are never depicted or mentioned in the literary sources, while the specimens suggested to demonstrate such amputations are not convincing. INTERPRETATION: The ancient Egyptians certainly treated fractures of various kinds, and with varying degrees of success. Concerning the reductions of dislocated joints and therapeutic amputations, there is no clear evidence for the existence of such procedures. It would, however, be surprising if dislocations were not treated, even though they have not left traces in the surviving sources. Concerning amputations, the general level of Egyptian surgery makes it unlikely that limb amputations were done, even if they may possibly have been performed under extraordinary circumstances

    Cerebral Impaludation - An Ignoble Procedure between Two Nobel Prizes : Frontal Lobe Lesions before the Introduction of Leucotomy

    No full text
    During the 20th century, only two persons have been awarded the Nobel Prize for psychiatric discoveries, Julius Wagner-Jauregg in 1927 for the introduction of malaria inoculation in dementia paralytica and Egas Moniz in 1949 for prefrontal leucotomy. According to traditional narrative, Moniz was inspired by a presentation by Carlyle Jacobsen on prefrontal lesions in chimpanzees at a congress in London in 1935. A few months later, he performed the first operations with the help of a young neurosurgeon. These leucotomies were done using injections of a small amount of alcohol into each frontal lobe through a single burr hole on each side of the skull, and the findings from the first 20 patients were published soon after that in 1936. It has, however, been difficult to reconstruct the path leading Moniz to frontal leucotomy, due to his unwillingness to acknowledge contributions from others. Maurice Ducoste, psychiatrist at Villejuif in Paris, France, started his work with psychiatric patients in the early 1920s with mechanical lesions in schizophrenia and continued with injections into the frontal lobes. Later, he focused on general paresis of the insane in neurosyphilis. Here, he introduced injections of malaria-infested blood into the frontal lobes - cerebral impaludation. Injections were used also in schizophrenia, mania, melancholia, and other psychiatric conditions. These injections were up to 5 mL in volume and could be repeated up to 12 times in an individual patient, which must have created significant lesions. Ducoste performed his procedure in hundreds of psychiatric patients before Moniz attempted leucotomy, and his work was presented in several publications before that by Moniz. Moniz basically used the same entry point, target depth, and technique in his first leucotomies. The major difference was that Moniz used alcohol with the clear intent of producing a lesion. Further, Moniz must have been aware of the work of Ducoste, since they presented papers, one after the other, at a meeting of the French Academy of Medicine in 1932. Even so, Moniz never acknowledged any contribution by Ducoste. In my opinion, it would be appropriate to acknowledge the contribution of Maurice Ducoste to the introduction of lobotomy

    Orthopedic surgery in ancient Egypt

    No full text
    BACKGROUND: Ancient Egypt might be considered the cradle of medicine. The modern literature is, however, sometimes rather too enthusiastic regarding the procedures that are attributed an Egyptian origin. I briefly present and analyze the claims regarding orthopedic surgery in Egypt, what was actually done by the Egyptians, and what may have been incorrectly ascribed to them. METHODS: I reviewed the original sources and also the modern literature regarding surgery in ancient Egypt, concentrating especially on orthopedic surgery. RESULTS: As is well known, both literary sources and the archaeological/osteological material bear witness to treatment of various fractures. The Egyptian painting, often claimed to depict the reduction of a dislocated shoulder according to Kocher's method, is, however, open to interpretation. Therapeutic amputations are never depicted or mentioned in the literary sources, while the specimens suggested to demonstrate such amputations are not convincing. INTERPRETATION: The ancient Egyptians certainly treated fractures of various kinds, and with varying degrees of success. Concerning the reductions of dislocated joints and therapeutic amputations, there is no clear evidence for the existence of such procedures. It would, however, be surprising if dislocations were not treated, even though they have not left traces in the surviving sources. Concerning amputations, the general level of Egyptian surgery makes it unlikely that limb amputations were done, even if they may possibly have been performed under extraordinary circumstances

    Analysis of deep brain stimulation and ablative lesions in surgical treatment of movement disorders : with emphasis on safety aspects

    No full text
    Background The last decade has witnessed a renaissance of functional stereotactic neurosurgery in the treatment of patients with movement disorders, especially advanced Parkinsonā€™s disease (PD), essential tremor (ET) and dystonia. Ablative lesions such as thalamotomy and pallidotomy have been gradually replaced by the technique of chronic deep brain stimulation (DBS) applied to targets in the basal ganglia and thalamus, and assumed to be more lenient to the brain than stereotactic radiofrequency lesions. Since the aim of functional neurosurgery is to alleviate symptoms of these chronic, progressive, non-fatal diseases, and to improve life quality of the patients, it is imperative that the surgical procedures remain safe and do not result in complications mitigating any anticipated positive effect of the surgery on the symptoms of the disease. Aim The aim of this thesis is to evaluate, compare and analyse the safety of various surgical procedures used to treat patients with movement disorders, and to document side effects and complications both peri operatively and in a long term follow-up. Further to compare the effects of pallidotomy and pallidal DBS, and to evaluate the longterm efficacy of Vim-DBS. Method 256 consecutive surgical procedures, 129 DBS and 127 stereotactic lesions, were reviewed with respect to complications in 197 treated patients. In a series of 119 patients operated on with DBS during a 10 year period, the occurrence of hardware related complications (infection, breakage, erosion etc) was documented and analysed. Additionally, the interference of external magnetic field with the stimulation was documented. In one patient operated on with subthalamic nucleus DBS, a highly unusual and unexpected psychiatric side effect was carefully analysed. In 5 patients operated on with both methods (lesion and DBS) on each hemisphere, respectively, the effect and side effects of each method were compared. The long term effect and side effects of thalamic DBS was analysed in a series of patients with ET followed for 7 years. Results There were no deaths and few severe neurological complications in this material. Unilateral ablative lesions in the pallidum were well tolerated by patients with advanced PD, while for tremor, thalamic DBS was much safer than thalamotomy, even if its effect on certain aspects of tremor could show some decrease of efficacy over time. Some of the side effects of lesioning are transient while most but not all side effects of DBS are reversible. Hardware-related complications were not uncommon especially in the early ā€œlearning curveā€ period, and the DBS technique, being a life-long therapy, will necessitate a life long follow up of patients. Provided safety protocols are followed and provided patientā€™s and carerā€™s education and awareness, external electromagnetic interference should not constitute a risk for patients with DBS. PD patients undergoing STN DBS should be carefully selected to avoid psychiatric or cognitive side effects, due to this brain targetĀ“s proximity to, and involvment in, non-motor associative and limbic circuitry. Conclusions In terms of mortality and morbidity, modern stereotactic neurosurgery for movement disorders, both ablation and DBS, is a safe procedure even in advanced stages of disease. Symptoms of PD, ET and dystonia can be alleviated mainly with DBS and even unilaterally with pallidal lesions, at the expense of, in most cases, minor side-effects

    An introduction to deep brain stimulation

    No full text

    Intracerebral Infections as a Complication of Deep Brain Stimulation

    No full text
    Background: Intracerebral infections after deep brain stimulation (DBS) are rare. The published material is limited to 2 case reports. A review of 20 publications of 3,818 patients focusing on complications of DBS did not reveal one single case. For that reason, we decided to present our own experience of 4 patients with this complication. Objectives: To analyze and present our material regarding intracerebral infections after DBS. Methods: Four patients with intracerebral infection after DBS were retrospectively analyzed. Results: The 4 patients exhibited signs of intracerebral infection 2-14 days after DBS for Parkinson's disease. CT and MRI verified signs of possible cerebral involvement. In 3 patients, positive cultures were obtained from the extracted electrodes. All patients recovered completely following treatment with antibiotics and removal of the implanted hardware. Two of the patients were later re-implanted. Conclusions: Intracerebral infection is a rare complication of DBS. It does, however, occur occasionally and should be taken into consideration when evaluating the risks of DBS. Copyright (c) 2012 S. Karger AG, Base

    Deep brain stimulation for Parkinson's disease

    No full text
    Parkinson's disease (PD) is a progressive neurodegenerative illness with both motor and nonmotor symptoms. Deep brain stimulation (DBS) is an established safe neurosurgical symptomatic therapy for eligible patients with advanced disease in whom medical treatment fails to provide adequate symptom control and good quality of life, or in whom dopaminergic medications induce severe side effects such as dyskinesias. DBS can be tailored to the patient's symptoms and targeted to various nodes along the basal ganglia-thalamus circuitry, which mediates the various symptoms of the illness; DBS in the thalamus is most efficient for tremors, and DBS in the pallidum most efficient for rigidity and dyskinesias, whereas DBS in the subthalamic nucleus (STN) can treat both tremors, akinesia, rigidity and dyskinesias, and allows for decrease in doses of medications even in patients with advanced stages of the disease, which makes it the preferred target for DBS. However, DBS in the STN assumes that the patient is not too old, with no cognitive decline or relevant depression, and does not exhibit severe and medically resistant axial symptoms such as balance and gait disturbances, and falls. Dysarthria is the most common side effect of DBS, regardless of the brain target. DBS has a long-lasting effect on appendicular symptoms, but with progression of disease, nondopaminergic axial features become less responsive to DBS. DBS for PD is highly specialised; to enable adequate selection and follow-up of patients, DBS requires dedicated multidisciplinary teams of movement disorder neurologists, functional neurosurgeons, specialised DBS nurses and neuropsychologists
    • ā€¦
    corecore