455 research outputs found

    Long-Range Forces in Direct Dark Matter Searches

    Get PDF
    We discuss the positive indications of a possible dark matter signal in direct detection experiments in terms of a mechanism of interaction between the dark matter particle and the nuclei occurring via the exchange of a light mediator, resulting in a long-range interaction. We analyze the annual modulation results observed by the DAMA and CoGeNT experiments and the observed excess of events of CRESST. In our analysis, we discuss the relevance of uncertainties related to the velocity distribution of galactic dark matter and to the channeling effect in NaI. We find that a long-range force is a viable mechanism, which can provide full agreement between the reconstructed dark matter properties from the various experimental data sets, especially for masses of the light mediator in the 10-30 MeV range and a light dark matter with a mass around 10 GeV. The relevant bounds on the light mediator mass and scattering cross section are then derived, should the annual modulation effects be due to this class of long-range forces.Comment: 22 pages, 14 figures. v2: Matches version published on Phys.Rev.D; analysis of CRESST to match the recent release of the new data updated, discussion on astrophysical constraints on self-interacting dark matter added, some typos corrected and some references added, conclusions unchanged. v3: Few typos correcte

    Can the flyby anomaly be attributed to earth-bound dark matter?

    Full text link
    We make preliminary estimates to assess whether the recently reported flyby anomaly can be attributed to dark matter interactions. We consider both elastic and exothermic inelastic scattering from dark matter constituents; for isotropic dark matter velocity distributions, the former decrease, while the latter increase, the final flyby velocity. The fact that the observed flyby velocity anomaly shows examples with both positive and negative signs, requires the dominance of different dark matter scattering processes along different flyby trajectories. The magnitude of the observed anomalies requires dark matter densities many orders of magnitude greater than the galactic halo density. Such a large density could result from an accumulation cascade, in which the solar system-bound dark matter density is much higher than the galactic halo density, and the earth-bound density is much higher than the solar system-bound density. We discuss a number of strong constraints on the hypothesis of a dark matter explanation for the flyby anomaly. These require dark matter to be non-self-annihilating, with the dark matter scattering cross section on nucleons much larger, and the dark matter mass much lighter, than usually assumed.Comment: Latex, 21 pages. v3: substantially revised and expanded; v4: version to appear in Phys. Rev.

    Carbon Detonation and Shock-Triggered Helium Burning in Neutron Star Superbursts

    Full text link
    The strong degeneracy of the 12C ignition layer on an accreting neutron star results in a hydrodynamic thermonuclear runaway, in which the nuclear heating time becomes shorter than the local dynamical time. We model the resulting combustion wave during these superbursts as an upward propagating detonation. We solve the reactive fluid flow and show that the detonation propagates through the deepest layers of fuel and drives a shock wave that steepens as it travels upward into lower density material. The shock is sufficiently strong upon reaching the freshly accreted H/He layer that it triggers unstable 4He burning if the superburst occurs during the latter half of the regular Type I bursting cycle; this is likely the origin of the bright Type I precursor bursts observed at the onset of superbursts. The cooling of the outermost shock-heated layers produces a bright, ~0.1s, flash that precedes the Type I burst by a few seconds; this may be the origin of the spike seen at the burst onset in 4U 1820-30 and 4U 1636-54, the only two bursts observed with RXTE at high time resolution. The dominant products of the 12C detonation are 28Si, 32S, and 36Ar. Gupta et al. showed that a crust composed of such intermediate mass elements has a larger heat flux than one composed of iron-peak elements and helps bring the superburst ignition depth into better agreement with values inferred from observations.Comment: 11 pages, 11 figures, accepted to ApJ; discussion about onset of detonation discussed in new detail, including a new figur

    Stimulated Neutrino Conversion and Bounds on Neutrino Magnetic Moments

    Get PDF
    Recent experiment proposed to observe induced radiative neutrino transitions are confronted to existing bounds on neutrino magnetic moments from earth-based experiments. These are found to exclude any observation by several orders of magnitude, unless the magnetic moments are assumed to be strongly momentum dependent. This possibility is discussed in some generality, and we find that nontrivial dependence of the neutrino form factor may indeed occur, leading to quite unexpected effects, although this is insufficient by orders of magnitude to justify the experiments.Comment: one reference modified + minor changes, 8 pages, plain Late

    Critical velocities c/3c/\sqrt 3 and c/2c/\sqrt 2 in general theory of relativity

    Full text link
    We consider a few thought experiments of radial motion of massive particles in the gravitational fields outside and inside various celestial bodies: Earth, Sun, black hole. All other interactions except gravity are disregarded. For the outside motion there exists a critical value of coordinate velocity vc=c/3{\rm v}_c = c/\sqrt 3: particles with v<vc{\rm v} < {\rm v}_c are accelerated by the field, like Newtonian apples, particles with v>vc{\rm v} > {\rm v}_c are decelerated like photons. Particles moving inside a body with constant density have no critical velocity; they are always accelerated. We consider also the motion of a ball inside a tower, when it is thrown from the top (bottom) of the tower and after classically bouncing at the bottom (top) comes back to the original point. The total time of flight is the same in these two cases if the initial proper velocity v0v_0 is equal to c/2c/\sqrt 2.Comment: 13 page

    An Improved Limit on Invisible Decays of Positronium

    Get PDF
    The results of a new search for positronium decays into invisible final states are reported. Convincing detection of this decay mode would be a strong evid ence for new physics beyond the Standard Model (SM): for example the existence of extra--dimensions, of milli-charged particles, of new light gauge bosons or of mirror particles. Mirror matter could be a relevant dark matter candidate. In this paper the setup and the results of a new experiment are presented. In a collected sample of about (6.31±0.28)×106(6.31\pm0.28) \times 10^6 orthopositronium decay s, no evidence for invisible decays in an energy window [0,80] keV was found and an upper limit on the branching ratio of orthopositronium \invdecay could be set: \binvdecay<4.2\times 10^{-7} (90% C.L.) Our results provide a limit on the photon mirror-photon mixing strength ϵ1.55×107\epsilon \leq 1.55\times 10^{-7} (90% C.L.) and rule out particles lighter than the electron mass with a fraction Qx3.4×105Q_x \leq 3.4 \times 10^{-5} of the electron charge. Furthermore, upper limits on the branching ratios for the decay of parapositronium Br(pPsinvisible)4.3×107Br(p-Ps\to invisible)\leq 4.3 \times 10^{-7} (90% C.L.) and the direct annihilation Br(e+einvisible)2.1×108Br(e^+e^-\to invisible)\leq 2.1 \times 10^{-8} (90% C.L.) could be set.Comment: 17 pages, 7 figures, added references, fixed limit on millicharged particles and changed two plots accordingl

    Can Deflagration-Detonation-Transitions occur in Type Ia Supernovae?

    Get PDF
    The mechanism for deflagration-detonation-transition (DDT) by turbulent preconditioning, suggested to explain the possible occurrence of delayed detonations in Type Ia supernova explosions, is argued to be conceptually inconsistent. It relies crucially on diffusive heat losses of the burned material on macroscopic scales. Regardless of the amplitude of turbulent velocity fluctuations, the typical gradient scale for temperature fluctuations is shown to be the laminar flame width or smaller, rather than the factor of thousand more required for a DDT. Furthermore, thermonuclear flames cannot be fully quenched in regions much larger than the laminar flame width as a consequence of their simple ``chemistry''. Possible alternative explosion scenarios are briefly discussed.Comment: 8 pages, uses aastex; added references. Accepted by ApJ Letter

    Very Strong TeV Emission as Gamma-Ray Burst Afterglows

    Get PDF
    Gamma-ray bursts (GRBs) and following afterglows are considered to be produced by dissipation of kinetic energy of a relativistic fireball and radiation process is widely believed as synchrotron radiation or inverse Compton scattering of electrons. We argue that the transfer of kinetic energy of ejecta into electrons may be inefficient process and hence the total energy released by a GRB event is much larger than that emitted in soft gamma-rays, by a factor of \sim (m_p/m_e). We show that, in this case, very strong emission of TeV gamma-rays is possible due to synchrotron radiation of protons accelerated up to \sim 10^{21} eV, which are trapped in the magnetic field of afterglow shock and radiate their energy on an observational time scale of \sim day. This suggests a possibility that GRBs are most energetic in TeV range and such TeV gamma-rays may be detectable from GRBs even at cosmological distances, i.e., z \sim 1, by currently working ground-based telescopes. Furthermore, this model gives a quantitative explanation for the famous long-duration GeV photons detected from GRB940217. If TeV gamma-ray emission which is much more energetic than GRB photons is detected, it provides a strong evidence for acceleration of protons up to \sim 10^{21} eV.Comment: 10 pages, no figure. To appear in ApJ Letter
    corecore